Jore Van Wauwe, Hannelore Kemps, Pieter Vrancaert, Alexia Mahy, Robin Schellingen, Mandy O J Grootaert, Manu Beerens, Aernout Luttun
{"title":"PRDM16, a new kid on the block in cardiovascular health and disease.","authors":"Jore Van Wauwe, Hannelore Kemps, Pieter Vrancaert, Alexia Mahy, Robin Schellingen, Mandy O J Grootaert, Manu Beerens, Aernout Luttun","doi":"10.1093/cvr/cvaf089","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptional regulation is essential for the development, homeostasis, and function of all organisms. Transcription factors and epigenetic modifiers play an indispensable role by direct or indirect interaction with DNA or chromatin. Although the role of transcription factor PRDM16 in adipose, hematopoietic, skeletal, and neural cell lineage specification is well-documented, its function within the cardiovascular system has only recently gained significant attention. Similar as in adipose tissue, PRDM16 displays an asymmetric expression pattern within the cardiovascular system, where it is exclusively expressed by ventricular cardiomyocytes and endothelial and smooth muscle cells of arteries, while being absent in their atrial and venous counterparts. Concordantly, an increasing number of clinical and preclinical studies have identified PRDM16 as an important multi-modal regulator of cardiovascular development and function. Moreover, aberrant PRDM16 expression has now been linked to (cardio)vascular diseases, including left ventricular non-compaction, migraine, and coronary artery disease. In this review, we give a synopsis of PRDM16's expression and function within (developing) cardiovascular tissues and provide insights into how impaired PRDM16 signaling contributes to cardiovascular disease.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvaf089","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Transcriptional regulation is essential for the development, homeostasis, and function of all organisms. Transcription factors and epigenetic modifiers play an indispensable role by direct or indirect interaction with DNA or chromatin. Although the role of transcription factor PRDM16 in adipose, hematopoietic, skeletal, and neural cell lineage specification is well-documented, its function within the cardiovascular system has only recently gained significant attention. Similar as in adipose tissue, PRDM16 displays an asymmetric expression pattern within the cardiovascular system, where it is exclusively expressed by ventricular cardiomyocytes and endothelial and smooth muscle cells of arteries, while being absent in their atrial and venous counterparts. Concordantly, an increasing number of clinical and preclinical studies have identified PRDM16 as an important multi-modal regulator of cardiovascular development and function. Moreover, aberrant PRDM16 expression has now been linked to (cardio)vascular diseases, including left ventricular non-compaction, migraine, and coronary artery disease. In this review, we give a synopsis of PRDM16's expression and function within (developing) cardiovascular tissues and provide insights into how impaired PRDM16 signaling contributes to cardiovascular disease.
期刊介绍:
Cardiovascular Research
Journal Overview:
International journal of the European Society of Cardiology
Focuses on basic and translational research in cardiology and cardiovascular biology
Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects
Submission Criteria:
Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels
Accepts clinical proof-of-concept and translational studies
Manuscripts expected to provide significant contribution to cardiovascular biology and diseases