{"title":"A highly scalable deep learning language model for common risks prediction among psychiatric inpatients.","authors":"Enzhao Zhu, Jiayi Wang, Guoquan Zhou, Chunbo Li, Fazhan Chen, Kang Ju, Liangliang Chen, Yichao Yin, Yi Chen, Yanping Zhang, Xu Zhang, Xinlin Zhou, Zongyuan Wang, Jianping Qiu, Hui Wang, Weizhong Shi, Feng Wang, Dong Wang, Zhihao Chen, Jiaojiao Hou, Hui Li, Zisheng Ai","doi":"10.1186/s12916-025-04150-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is a lack of studies exploring the performance of Transformers-based language models in common risks assessment among psychiatric inpatients. We aim to develop a scalable risk assessment model using multidimensional textualized data and test the stability, robustness, and benefit of this approach.</p><p><strong>Methods: </strong>In this real-world cohort study, a deep learning language model was developed and validated using first hospitalized cases diagnosed with schizophrenia, bipolar disorder, and depressive disorder between January 2016 and March 2023 in three hospitals. The algorithm was externally validated on an independent testing cohort comprising 1180 patients. A total of 140 features, including first medical records (FMR), laboratory examinations, medical orders, and psychological scales, were assessed for analysis. The outcomes were short- and long-term impulsivity (STI and LTI), risk of suicide (STSS and LTSS), and need of physical restraint (STPR and LTPR) assessed by qualified nurses or clinicians. Analysis was carried out between August 2024 and June 2024. Models with different architectures and input settings were compared with each other. The area under the receiver operating characteristic curve (AUROC) was used to assess the primary performance of models. The clinical utility was determined by the net benefit under Youden's threshold.</p><p><strong>Results: </strong>Of 7451 patients included in this study, 2982 (47.6%) were male, and the median (interquartile range) age was 42 (28-57) years. The overall incidence of outcomes was 635 (8.5%), 728 (10.5%), 659 (8.8%), 803 (10.8%), 588 (7.9%), and 728 (9.8%) for STPR, LTPR, STSS, LTSS, STI, and LTI, respectively. The multitask semi-structured Transformers-based language (SSTL) model showed more promising AUROCs (STPR: 0.915; LTPR: 0.844; STSS: 0.867; LTSS: 0.879; STI: 0.899; LTI: 0.894) in the prediction of these outcomes than single-tasked or multimodal language models and traditional structured data models. Combining FMR with other data from electronic health records led to significant improvements in the performance and clinical utility of SSTL models based on demographic, diagnosis, laboratory tests, treatment, and psychological scales.</p><p><strong>Conclusions: </strong>The SSTL model shows potential advantages in prognostic evaluation. FMR is a strong predictor for common risks prediction and may benefit other tasks in psychiatry with minimum requirements for data and data processing.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"308"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121029/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-04150-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: There is a lack of studies exploring the performance of Transformers-based language models in common risks assessment among psychiatric inpatients. We aim to develop a scalable risk assessment model using multidimensional textualized data and test the stability, robustness, and benefit of this approach.
Methods: In this real-world cohort study, a deep learning language model was developed and validated using first hospitalized cases diagnosed with schizophrenia, bipolar disorder, and depressive disorder between January 2016 and March 2023 in three hospitals. The algorithm was externally validated on an independent testing cohort comprising 1180 patients. A total of 140 features, including first medical records (FMR), laboratory examinations, medical orders, and psychological scales, were assessed for analysis. The outcomes were short- and long-term impulsivity (STI and LTI), risk of suicide (STSS and LTSS), and need of physical restraint (STPR and LTPR) assessed by qualified nurses or clinicians. Analysis was carried out between August 2024 and June 2024. Models with different architectures and input settings were compared with each other. The area under the receiver operating characteristic curve (AUROC) was used to assess the primary performance of models. The clinical utility was determined by the net benefit under Youden's threshold.
Results: Of 7451 patients included in this study, 2982 (47.6%) were male, and the median (interquartile range) age was 42 (28-57) years. The overall incidence of outcomes was 635 (8.5%), 728 (10.5%), 659 (8.8%), 803 (10.8%), 588 (7.9%), and 728 (9.8%) for STPR, LTPR, STSS, LTSS, STI, and LTI, respectively. The multitask semi-structured Transformers-based language (SSTL) model showed more promising AUROCs (STPR: 0.915; LTPR: 0.844; STSS: 0.867; LTSS: 0.879; STI: 0.899; LTI: 0.894) in the prediction of these outcomes than single-tasked or multimodal language models and traditional structured data models. Combining FMR with other data from electronic health records led to significant improvements in the performance and clinical utility of SSTL models based on demographic, diagnosis, laboratory tests, treatment, and psychological scales.
Conclusions: The SSTL model shows potential advantages in prognostic evaluation. FMR is a strong predictor for common risks prediction and may benefit other tasks in psychiatry with minimum requirements for data and data processing.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.