Amy J Thompson, James Beilsten-Edmands, Cicely Tam, Juan Sanchez-Weatherby, James Sandy, Halina Mikolajek, Danny Axford, Sofia Jaho, Michael A Hough, Graeme Winter
{"title":"Enhanced intensity-based clustering of isomorphous multi-crystal data sets in the presence of subtle variations.","authors":"Amy J Thompson, James Beilsten-Edmands, Cicely Tam, Juan Sanchez-Weatherby, James Sandy, Halina Mikolajek, Danny Axford, Sofia Jaho, Michael A Hough, Graeme Winter","doi":"10.1107/S2059798325004589","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-crystal processing of X-ray diffraction data has become highly automated to keep pace with the current high-throughput capabilities afforded by beamlines. A significant challenge, however, is the automated clustering of such data based on subtle differences such as ligand binding or conformational shifts. Intensity-based hierarchical clustering has been shown to be a viable method of identifying such subtle structural differences, but the interpretation of the resulting dendrograms is difficult to automate. Using isomorphous crystals of bovine, porcine and human insulin, the existing clustering methods in the multi-crystal processing software xia2.multiplex were validated and their limits were tested. It was determined that weighting the pairwise correlation coefficient calculations with the intensity uncertainties was required for accurate calculation of the pairwise correlation coefficient matrix (correlation clustering) and dimension optimization was required when expressing this matrix as a set of coordinates representing data sets (cosine-angle clustering). Finally, the introduction of the OPTICS spatial density-based clustering algorithm into DIALS allowed the automatic output of species-pure clusters of bovine, porcine and human insulin data sets.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"278-290"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798325004589","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-crystal processing of X-ray diffraction data has become highly automated to keep pace with the current high-throughput capabilities afforded by beamlines. A significant challenge, however, is the automated clustering of such data based on subtle differences such as ligand binding or conformational shifts. Intensity-based hierarchical clustering has been shown to be a viable method of identifying such subtle structural differences, but the interpretation of the resulting dendrograms is difficult to automate. Using isomorphous crystals of bovine, porcine and human insulin, the existing clustering methods in the multi-crystal processing software xia2.multiplex were validated and their limits were tested. It was determined that weighting the pairwise correlation coefficient calculations with the intensity uncertainties was required for accurate calculation of the pairwise correlation coefficient matrix (correlation clustering) and dimension optimization was required when expressing this matrix as a set of coordinates representing data sets (cosine-angle clustering). Finally, the introduction of the OPTICS spatial density-based clustering algorithm into DIALS allowed the automatic output of species-pure clusters of bovine, porcine and human insulin data sets.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.