Mechanisms of CO2 Absorption in Amino Acid-Based Deep Eutectic Solvents: Insights from Molecular Dynamics and DFT Calculations.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Hung-Yi Chi, Heng-Kwong Tsao, Yu-Jane Sheng
{"title":"Mechanisms of CO<sub>2</sub> Absorption in Amino Acid-Based Deep Eutectic Solvents: Insights from Molecular Dynamics and DFT Calculations.","authors":"Hung-Yi Chi, Heng-Kwong Tsao, Yu-Jane Sheng","doi":"10.1021/acs.jpcb.5c00558","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the mechanisms of CO<sub>2</sub> absorption in two amino acid-containing deep eutectic solvents (DESs) through molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The MD simulations, which focus mainly on physical absorption, reveal that alanine-based DES (Ala DES) exhibits higher CO<sub>2</sub> solubility than l-arginine-based DES (l-arg DES), attributed to stronger physical absorption. Furthermore, the hydrogen bond donor paired with the amino acids is identified as a critical factor for enhancing physical absorption efficiency. DFT calculations, which account for chemical absorption, investigate two reaction pathways: single-molecule reactions involving intramolecular proton transfer and two-molecule reactions involving intermolecular proton exchange. While Ala DES does not exhibit spontaneous chemical absorption, l-arg DES demonstrates such reactions, leading to the formation of carbamic acid or carbamate (Δ<i>G</i> < 0), indicative of CO<sub>2</sub> capture through chemical interactions. Consequently, Ala DES primarily relies on physical absorption, whereas l-arg DES utilizes multiple reactive sites for chemical absorption. These results are consistent with experimental findings, which show that l-arg DES achieves higher CO<sub>2</sub> solubility under atmospheric conditions. Overall, our study highlights the interplay between DES components and reactivity in enhancing CO<sub>2</sub> capture efficiency.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c00558","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the mechanisms of CO2 absorption in two amino acid-containing deep eutectic solvents (DESs) through molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The MD simulations, which focus mainly on physical absorption, reveal that alanine-based DES (Ala DES) exhibits higher CO2 solubility than l-arginine-based DES (l-arg DES), attributed to stronger physical absorption. Furthermore, the hydrogen bond donor paired with the amino acids is identified as a critical factor for enhancing physical absorption efficiency. DFT calculations, which account for chemical absorption, investigate two reaction pathways: single-molecule reactions involving intramolecular proton transfer and two-molecule reactions involving intermolecular proton exchange. While Ala DES does not exhibit spontaneous chemical absorption, l-arg DES demonstrates such reactions, leading to the formation of carbamic acid or carbamate (ΔG < 0), indicative of CO2 capture through chemical interactions. Consequently, Ala DES primarily relies on physical absorption, whereas l-arg DES utilizes multiple reactive sites for chemical absorption. These results are consistent with experimental findings, which show that l-arg DES achieves higher CO2 solubility under atmospheric conditions. Overall, our study highlights the interplay between DES components and reactivity in enhancing CO2 capture efficiency.

CO2在氨基酸基深共晶溶剂中的吸收机理:分子动力学和DFT计算的见解。
本文通过分子动力学(MD)模拟和密度泛函理论(DFT)计算,探讨了两种含氨基酸的深共晶溶剂(DESs)对CO2的吸收机理。MD模拟主要关注物理吸收,结果表明丙氨酸基DES (Ala DES)比l-精氨酸基DES (l-arg DES)具有更高的CO2溶解度,这是由于其更强的物理吸收。此外,与氨基酸配对的氢键供体被确定为提高物理吸收效率的关键因素。考虑化学吸收的DFT计算研究了两种反应途径:涉及分子内质子转移的单分子反应和涉及分子间质子交换的双分子反应。虽然Ala DES不表现自发的化学吸收,但l-arg DES表现出这种反应,导致氨基甲酸或氨基甲酸酯的形成(ΔG < 0),表明通过化学相互作用捕获CO2。因此,Ala DES主要依靠物理吸收,而l-arg DES利用多个反应位点进行化学吸收。这些结果与实验结果一致,表明l-arg DES在大气条件下具有较高的CO2溶解度。总的来说,我们的研究强调了DES组分和反应性在提高CO2捕获效率方面的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信