{"title":"Current advances in the role of classical non-homologous end joining in hematologic malignancies","authors":"Pengcheng Liu, Zizhen Xu","doi":"10.1002/ctd2.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Double-strand breaks (DSBs) are universally acknowledged as the most detrimental type of DNA damage, and their effective repair primarily depends on the non-homologous end joining (NHEJ) pathway. Such DSBs, which require NHEJ for resolution, can arise from intrinsic and extrinsic DNA-damaging factors or emerge naturally during essential biological processes like V(D)J recombination and antibody class switch recombination.</p>\n </section>\n \n <section>\n \n <h3> Main Body</h3>\n \n <p>Failure to properly repair DSBs may lead to genomic instability, disruption of cellular functions, and immunodeficiency, thereby promoting the development of hematologic malignancies. Conversely, overexpression of NHEJ-related genes can enhance resistance to DNA-damaging therapies in these cancers. Analyzing mutations in key classical NHEJ (cNHEJ) components and understanding their mechanisms could provide valuable biomarkers for predicting therapeutic outcomes and guiding treatment decisions. Consequently, defects in cNHEJ may offer insights into the development of novel drugs targeting DNA repair pathways.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>We focus on genetic changes and alterations in gene regulation, while also providing an overview of cNHEJ.</p>\n </section>\n </div>","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70053","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and translational discovery","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctd2.70053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Double-strand breaks (DSBs) are universally acknowledged as the most detrimental type of DNA damage, and their effective repair primarily depends on the non-homologous end joining (NHEJ) pathway. Such DSBs, which require NHEJ for resolution, can arise from intrinsic and extrinsic DNA-damaging factors or emerge naturally during essential biological processes like V(D)J recombination and antibody class switch recombination.
Main Body
Failure to properly repair DSBs may lead to genomic instability, disruption of cellular functions, and immunodeficiency, thereby promoting the development of hematologic malignancies. Conversely, overexpression of NHEJ-related genes can enhance resistance to DNA-damaging therapies in these cancers. Analyzing mutations in key classical NHEJ (cNHEJ) components and understanding their mechanisms could provide valuable biomarkers for predicting therapeutic outcomes and guiding treatment decisions. Consequently, defects in cNHEJ may offer insights into the development of novel drugs targeting DNA repair pathways.
Conclusion
We focus on genetic changes and alterations in gene regulation, while also providing an overview of cNHEJ.