{"title":"An Ensemble Decision Trees Model to Predict Traffic Pattern for Maritime Traffic Management","authors":"Zhao Liu, Weipeng Zuo, Hua Shi, Wanli Chen, Xiao Lang, Wengang Mao, Mingyang Zhang","doi":"10.1049/itr2.70049","DOIUrl":null,"url":null,"abstract":"<p>This study presents a traffic pattern prediction model using ensembles of decision trees, leveraging AIS data to classify maritime traffic patterns. The model integrates static information, such as origin and destination, with dynamic data, including ship speed, course and spatial position, to define and extract relevant traffic features. By combining traditional algorithms with a decision tree ensemble model, a stacked predictive framework is constructed and trained on these extracted traffic characteristics. The model is applied and validated using data from the Fujiangsha waters of the Jiangsu section of the Yangtze River. Comparative analysis reveals that this model consistently outperforms traditional algorithms and ensemble models, maintaining stable accuracy above 98% across diverse scenarios. Testing on unseen ship data further confirms the model's predictive reliability, aligning well with actual navigation patterns. The findings suggest that this model has strong potential to (1) forecast navigation routes for improved traffic management, (2) infer ship behaviour based on predicted traffic patterns and (3) support future applications in intelligent ship navigation.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a traffic pattern prediction model using ensembles of decision trees, leveraging AIS data to classify maritime traffic patterns. The model integrates static information, such as origin and destination, with dynamic data, including ship speed, course and spatial position, to define and extract relevant traffic features. By combining traditional algorithms with a decision tree ensemble model, a stacked predictive framework is constructed and trained on these extracted traffic characteristics. The model is applied and validated using data from the Fujiangsha waters of the Jiangsu section of the Yangtze River. Comparative analysis reveals that this model consistently outperforms traditional algorithms and ensemble models, maintaining stable accuracy above 98% across diverse scenarios. Testing on unseen ship data further confirms the model's predictive reliability, aligning well with actual navigation patterns. The findings suggest that this model has strong potential to (1) forecast navigation routes for improved traffic management, (2) infer ship behaviour based on predicted traffic patterns and (3) support future applications in intelligent ship navigation.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf