Towards Open-Vocabulary Video Semantic Segmentation

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xinhao Li;Yun Liu;Guolei Sun;Min Wu;Le Zhang;Ce Zhu
{"title":"Towards Open-Vocabulary Video Semantic Segmentation","authors":"Xinhao Li;Yun Liu;Guolei Sun;Min Wu;Le Zhang;Ce Zhu","doi":"10.1109/TMM.2025.3557719","DOIUrl":null,"url":null,"abstract":"Semantic segmentation in videos has been a focal point of recent research. However, existing models encounter challenges when faced with unfamiliar categories. To address this, we introduce the Open Vocabulary Video Semantic Segmentation (OV-VSS) task, designed to accurately segment every pixel across a wide range of open-vocabulary categories, including those that are novel or previously unexplored. To enhance OV-VSS performance, we propose a robust baseline, OV2VSS, which integrates a spatial-temporal fusion module, allowing the model to utilize temporal relationships across consecutive frames. Additionally, we incorporate a random frame enhancement module, broadening the model's understanding of semantic context throughout the entire video sequence. Our approach also includes video text encoding, which strengthens the model's capability to interpret textual information within the video context. Comprehensive evaluations on benchmark datasets such as VSPW and Cityscapes highlight OV-VSS's zero-shot generalization capabilities, especially in handling novel categories. The results validate OV2VSS's effectiveness, demonstrating improved performance in semantic segmentation tasks across diverse video datasets.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"2924-2934"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948313/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic segmentation in videos has been a focal point of recent research. However, existing models encounter challenges when faced with unfamiliar categories. To address this, we introduce the Open Vocabulary Video Semantic Segmentation (OV-VSS) task, designed to accurately segment every pixel across a wide range of open-vocabulary categories, including those that are novel or previously unexplored. To enhance OV-VSS performance, we propose a robust baseline, OV2VSS, which integrates a spatial-temporal fusion module, allowing the model to utilize temporal relationships across consecutive frames. Additionally, we incorporate a random frame enhancement module, broadening the model's understanding of semantic context throughout the entire video sequence. Our approach also includes video text encoding, which strengthens the model's capability to interpret textual information within the video context. Comprehensive evaluations on benchmark datasets such as VSPW and Cityscapes highlight OV-VSS's zero-shot generalization capabilities, especially in handling novel categories. The results validate OV2VSS's effectiveness, demonstrating improved performance in semantic segmentation tasks across diverse video datasets.
面向开放词汇的视频语义分割
视频中的语义分割一直是近年来研究的热点。然而,当面对不熟悉的类别时,现有的模型会遇到挑战。为了解决这个问题,我们引入了开放词汇视频语义分割(OV-VSS)任务,旨在准确地分割各种开放词汇类别中的每个像素,包括那些新颖或以前未探索过的类别。为了提高OV-VSS的性能,我们提出了一个鲁棒基线OV2VSS,它集成了一个时空融合模块,使模型能够利用连续帧之间的时间关系。此外,我们结合了一个随机帧增强模块,扩大了模型对整个视频序列的语义上下文的理解。我们的方法还包括视频文本编码,这加强了模型在视频上下文中解释文本信息的能力。对基准数据集(如VSPW和cityscape)的综合评估突出了OV-VSS的零射击泛化能力,特别是在处理新类别方面。结果验证了OV2VSS的有效性,展示了跨不同视频数据集的语义分割任务的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信