Assessing Oscillatory Stability With Dominant Grid-Forming Power Systems for Active Power Imbalances

IF 3.2 Q3 ENERGY & FUELS
Sander Lid Skogen;José Luis Rueda Torres
{"title":"Assessing Oscillatory Stability With Dominant Grid-Forming Power Systems for Active Power Imbalances","authors":"Sander Lid Skogen;José Luis Rueda Torres","doi":"10.1109/OAJPE.2025.3571108","DOIUrl":null,"url":null,"abstract":"As the integration of renewable energy accelerates, ensuring power system stability becomes increasingly critical. This research utilized a Root Mean Square (RMS) synthetic model of the future 380 kV Dutch power system towards 2050 to analyze its oscillatory stability under high renewable penetration and the impact of grid-forming converters under various parametrizations. The presented case study shows that grid-forming (GFM) converters significantly improve frequency stability and damping performance across different perturbations, particularly at higher GFM penetration levels, improving frequency and damping parameters. However, various oscillatory modes present potential stability risks at high penetration levels. The case study also shows minimal differences in controller selection in large-scale models, except under certain conditions. Additionally, the analysis of controller parameters highlighted the critical importance of tuning active power parameters to ensure system stability. The investigation provides essential insights for future power systems, where large-scale integration of renewable energy will necessitate the implementation of converters able to provide ancillary services. The findings emphasize the importance of optimizing GFM converter settings and penetration levels to maintain system resilience, offering valuable guidance for future system planning and regulatory frameworks.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"318-329"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11008671","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11008671/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As the integration of renewable energy accelerates, ensuring power system stability becomes increasingly critical. This research utilized a Root Mean Square (RMS) synthetic model of the future 380 kV Dutch power system towards 2050 to analyze its oscillatory stability under high renewable penetration and the impact of grid-forming converters under various parametrizations. The presented case study shows that grid-forming (GFM) converters significantly improve frequency stability and damping performance across different perturbations, particularly at higher GFM penetration levels, improving frequency and damping parameters. However, various oscillatory modes present potential stability risks at high penetration levels. The case study also shows minimal differences in controller selection in large-scale models, except under certain conditions. Additionally, the analysis of controller parameters highlighted the critical importance of tuning active power parameters to ensure system stability. The investigation provides essential insights for future power systems, where large-scale integration of renewable energy will necessitate the implementation of converters able to provide ancillary services. The findings emphasize the importance of optimizing GFM converter settings and penetration levels to maintain system resilience, offering valuable guidance for future system planning and regulatory frameworks.
有功不平衡下优势并网电力系统振荡稳定性评估
随着可再生能源并网进程的加快,确保电力系统的稳定性变得越来越重要。本研究利用荷兰未来380 kV电力系统至2050年的均方根(RMS)综合模型,分析了可再生能源高渗透率下荷兰电力系统的振荡稳定性,以及不同参数下并网变流器的影响。本案例研究表明,网格形成(GFM)转换器显著提高了不同扰动下的频率稳定性和阻尼性能,特别是在更高的GFM渗透水平下,改善了频率和阻尼参数。然而,在高穿透水平下,各种振荡模式存在潜在的稳定性风险。案例研究还表明,除了在某些条件下,大型模型中控制器选择的差异很小。此外,通过对控制器参数的分析,强调了调整有功功率参数对保证系统稳定性的重要性。这项调查为未来的电力系统提供了重要的见解,可再生能源的大规模整合将需要能够提供辅助服务的转换器的实施。研究结果强调了优化GFM转换器设置和渗透水平以保持系统弹性的重要性,为未来的系统规划和监管框架提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信