VideoDreamer: Customized Multi-Subject Text-to-Video Generation With Disen-Mix Finetuning on Language-Video Foundation Models

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hong Chen;Xin Wang;Guanning Zeng;Yipeng Zhang;Yuwei Zhou;Feilin Han;Yaofei Wu;Wenwu Zhu
{"title":"VideoDreamer: Customized Multi-Subject Text-to-Video Generation With Disen-Mix Finetuning on Language-Video Foundation Models","authors":"Hong Chen;Xin Wang;Guanning Zeng;Yipeng Zhang;Yuwei Zhou;Feilin Han;Yaofei Wu;Wenwu Zhu","doi":"10.1109/TMM.2025.3557634","DOIUrl":null,"url":null,"abstract":"Customized text-to-video generation aims to generate text-guided videos with user-given subjects, which has gained increasing attention. However, existing works are primarily limited to single-subject oriented text-to-video generation, leaving the more challenging problem of customized multi-subject generation unexplored. In this paper, we fill this gap and propose a novel VideoDreamer framework, which can generate temporally consistent text-guided videos that faithfully preserve the visual features of the given multiple subjects. Specifically, VideoDreamer adopts the pretrained Stable Diffusion with temporal modules as its base video generator, taking the power of the text-to-image model to generate diversified content. The video generator is further customized for multi-subjects, which leverages the proposed Disen-Mix Finetuning and Human-in-the-Loop Re-finetuning strategy, to tackle the attribute binding problem of multi-subject generation. Additionally, we present a disentangled motion customization strategy to finetune the temporal modules so that we can generate videos with both customized subjects and motions. To evaluate the performance of customized multi-subject text-to-video generation, we introduce the MultiStudioBench benchmark. Extensive experiments demonstrate the remarkable ability of VideoDreamer to generate videos with new content such as new events and backgrounds, tailored to the customized multiple subjects.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"2875-2885"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10950092/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Customized text-to-video generation aims to generate text-guided videos with user-given subjects, which has gained increasing attention. However, existing works are primarily limited to single-subject oriented text-to-video generation, leaving the more challenging problem of customized multi-subject generation unexplored. In this paper, we fill this gap and propose a novel VideoDreamer framework, which can generate temporally consistent text-guided videos that faithfully preserve the visual features of the given multiple subjects. Specifically, VideoDreamer adopts the pretrained Stable Diffusion with temporal modules as its base video generator, taking the power of the text-to-image model to generate diversified content. The video generator is further customized for multi-subjects, which leverages the proposed Disen-Mix Finetuning and Human-in-the-Loop Re-finetuning strategy, to tackle the attribute binding problem of multi-subject generation. Additionally, we present a disentangled motion customization strategy to finetune the temporal modules so that we can generate videos with both customized subjects and motions. To evaluate the performance of customized multi-subject text-to-video generation, we introduce the MultiStudioBench benchmark. Extensive experiments demonstrate the remarkable ability of VideoDreamer to generate videos with new content such as new events and backgrounds, tailored to the customized multiple subjects.
自定义多主题文本到视频生成与Disen-Mix微调语言视频基础模型
自定义文本到视频生成旨在生成用户给定主题的文本引导视频,这一技术越来越受到关注。然而,现有的工作主要局限于面向单一主题的文本到视频生成,而更具有挑战性的定制多主题生成问题尚未得到探索。在本文中,我们填补了这一空白,并提出了一个新的videodream框架,该框架可以生成时间一致的文本引导视频,忠实地保留给定多个主题的视觉特征。具体来说,video做梦者采用带有时间模块的预训练的Stable Diffusion作为其基础视频生成器,利用文本到图像模型的力量生成多样化的内容。进一步针对多主题定制视频生成器,利用提出的Disen-Mix微调和Human-in-the-Loop再微调策略,解决多主题生成的属性绑定问题。此外,我们提出了一个解纠缠的动作定制策略来微调时间模块,以便我们可以生成具有自定义主题和动作的视频。为了评估自定义多主题文本到视频生成的性能,我们引入了multistudibench基准测试。大量的实验证明了VideoDreamer生成新内容(如新事件和背景)视频的卓越能力,这些内容是针对定制的多个主题量身定制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信