{"title":"Spin-triplet f-wave pairing via cyclic exchange in the anisotropic triangular Hubbard model: A route to unconventional superconductivity","authors":"S. Nishimoto , Y. Ohta","doi":"10.1016/j.physc.2025.1354742","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the interplay between ferromagnetism and unconventional superconductivity in a two-dimensional anisotropic triangular-lattice Hubbard model using the density-matrix renormalization group (DMRG) method. A novel mechanism for spin-triplet <em>f</em>-wave superconductivity is identified, driven by three-site cyclic-exchange interactions. This mechanism highlights the crucial role of lattice anisotropy and triangular hopping networks in stabilizing ferromagnetic correlations necessary for spin-triplet pairing. The slow decay of pair-correlation functions and their sign change under a <span><math><mrow><mi>π</mi><mo>/</mo><mn>3</mn></mrow></math></span> rotation confirm the dominant <em>f</em>-wave symmetry of the superconducting state. These findings offer a unified theoretical framework for understanding unconventional superconductivity in strongly correlated electron systems, with potential relevance to materials such as Bechgaard salts <span><math><mrow><msub><mrow><mrow><mo>(</mo><mtext>TMTSF</mtext><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msub><mtext>X</mtext></mrow></math></span>, cobalt oxide <span><math><mrow><msub><mrow><mtext>Na</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>35</mn></mrow></msub><msub><mrow><mtext>CoO</mtext></mrow><mrow><mn>2</mn></mrow></msub><mi>⋅</mi><mn>1</mn><mo>.</mo><mn>3</mn><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub><mtext>O</mtext></mrow></math></span>, and layered perovskite <span><math><mrow><msub><mrow><mtext>Sr</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>RuO</mtext></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"635 ","pages":"Article 1354742"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453425000954","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the interplay between ferromagnetism and unconventional superconductivity in a two-dimensional anisotropic triangular-lattice Hubbard model using the density-matrix renormalization group (DMRG) method. A novel mechanism for spin-triplet f-wave superconductivity is identified, driven by three-site cyclic-exchange interactions. This mechanism highlights the crucial role of lattice anisotropy and triangular hopping networks in stabilizing ferromagnetic correlations necessary for spin-triplet pairing. The slow decay of pair-correlation functions and their sign change under a rotation confirm the dominant f-wave symmetry of the superconducting state. These findings offer a unified theoretical framework for understanding unconventional superconductivity in strongly correlated electron systems, with potential relevance to materials such as Bechgaard salts , cobalt oxide , and layered perovskite .
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.