{"title":"Cognitive UAV-assisted secure and reliable communications based on robust joint trajectory and power control optimization","authors":"Can Wang, Junhong Zhang, Helin Yang","doi":"10.1016/j.vehcom.2025.100941","DOIUrl":null,"url":null,"abstract":"<div><div>The cognitive unmanned aerial vehicle (UAV) communication system has emerged as a pivotal technology in addressing the scarcity of spectral resources for UAV communications, but the jamming and eavesdropping attacks are severe due to the high-quality air-to-ground communication links. Consequently, this paper introduces a UAV-enabled cooperative jammer to disrupt the eavesdropping activities of active eavesdroppers by emitting artificial noise. Our objective is to jointly optimize the three-dimensional UAV trajectory and transmit power to maximize the secrecy communication rate under quality of service (QoS) requirement. To tackle the non-convex problem, the block coordinate descent (BCD) and successive convex approximation (SCA) methods are utilized to transform it into an approximate convex problem, and then we design an alternative optimization iterative algorithm to achieve suboptimal but efficient solution. Moreover, we extend the developed algorithm into an imperfect channel state information (CSI) scenario to maximize the worst-case secrecy rate by jointly optimizing the robust UAV's trajectory and transmit power, where the location uncertainties of ground primary, secondary, and eavesdropping devices are considered. Simulation results demonstrate that the proposed joint optimization algorithm significantly enhances system secrecy performance under different real-world settings compared to existing state-of-the-art algorithms.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"54 ","pages":"Article 100941"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000683","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The cognitive unmanned aerial vehicle (UAV) communication system has emerged as a pivotal technology in addressing the scarcity of spectral resources for UAV communications, but the jamming and eavesdropping attacks are severe due to the high-quality air-to-ground communication links. Consequently, this paper introduces a UAV-enabled cooperative jammer to disrupt the eavesdropping activities of active eavesdroppers by emitting artificial noise. Our objective is to jointly optimize the three-dimensional UAV trajectory and transmit power to maximize the secrecy communication rate under quality of service (QoS) requirement. To tackle the non-convex problem, the block coordinate descent (BCD) and successive convex approximation (SCA) methods are utilized to transform it into an approximate convex problem, and then we design an alternative optimization iterative algorithm to achieve suboptimal but efficient solution. Moreover, we extend the developed algorithm into an imperfect channel state information (CSI) scenario to maximize the worst-case secrecy rate by jointly optimizing the robust UAV's trajectory and transmit power, where the location uncertainties of ground primary, secondary, and eavesdropping devices are considered. Simulation results demonstrate that the proposed joint optimization algorithm significantly enhances system secrecy performance under different real-world settings compared to existing state-of-the-art algorithms.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.