{"title":"Next leap in the sustainable transport revolution: Identifying gaps and proposing solutions for hydrogen mobility","authors":"Fangjie Liu , Muhammad Shafique , Xiaowei Luo","doi":"10.1016/j.commtr.2025.100180","DOIUrl":null,"url":null,"abstract":"<div><div>Amid escalating global climate concerns, the reliance of the transportation sector on high-carbon fossil fuels urgently demands sustainable alternatives. Hydrogen has emerged as a potent solution because of its zero-emission usage, but its overall impact hinges on its full life cycle, which this review comprehensively examines. This article delves into the environmental, economic, and safety dimensions of hydrogen as an alternative fuel by systematically reviewing the life cycle assessment (LCA) literature across the production, storage, delivery, and usage phases, with a focus on electrolysis and natural gas reforming methods, among others. A key insight from this study is the critical importance of considering the entire delivery system holistically rather than isolating the delivery phase. Many studies have overlooked two important aspects: first, the distribution of hydrogen as a product itself is often underemphasized; second, the integration of storage and delivery (the “storage-delivery nexus”) is crucial since separating them can lead to misleading conclusions about cost and emissions. For example, while certain delivery methods may appear cost-effective, their associated storage processes (such as hydrogenation and dehydrogenation in liquid organic hydrogen carrier systems) can have significant emission impacts. To address these gaps, this study introduces a novel “surface-level” LCA framework to enhance the assessment of the environmental impacts of hydrogen, promoting a more integrated understanding of the storage-delivery system. This framework aims to provide more accurate insights into hydrogen's life cycle, thereby facilitating better-informed policy-making and technological advancements. This study underscores the imperative for robust policy support, public engagement, and continuous innovation to overcome these barriers, advocating for strategic initiatives that bolster the sustainability and adoption of hydrogen mobility, particularly in hydrogen fuel cell vehicles (HFCVs).</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100180"},"PeriodicalIF":12.5000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Amid escalating global climate concerns, the reliance of the transportation sector on high-carbon fossil fuels urgently demands sustainable alternatives. Hydrogen has emerged as a potent solution because of its zero-emission usage, but its overall impact hinges on its full life cycle, which this review comprehensively examines. This article delves into the environmental, economic, and safety dimensions of hydrogen as an alternative fuel by systematically reviewing the life cycle assessment (LCA) literature across the production, storage, delivery, and usage phases, with a focus on electrolysis and natural gas reforming methods, among others. A key insight from this study is the critical importance of considering the entire delivery system holistically rather than isolating the delivery phase. Many studies have overlooked two important aspects: first, the distribution of hydrogen as a product itself is often underemphasized; second, the integration of storage and delivery (the “storage-delivery nexus”) is crucial since separating them can lead to misleading conclusions about cost and emissions. For example, while certain delivery methods may appear cost-effective, their associated storage processes (such as hydrogenation and dehydrogenation in liquid organic hydrogen carrier systems) can have significant emission impacts. To address these gaps, this study introduces a novel “surface-level” LCA framework to enhance the assessment of the environmental impacts of hydrogen, promoting a more integrated understanding of the storage-delivery system. This framework aims to provide more accurate insights into hydrogen's life cycle, thereby facilitating better-informed policy-making and technological advancements. This study underscores the imperative for robust policy support, public engagement, and continuous innovation to overcome these barriers, advocating for strategic initiatives that bolster the sustainability and adoption of hydrogen mobility, particularly in hydrogen fuel cell vehicles (HFCVs).