K-theoretic Tate-Poitou duality at prime 2

IF 1.5 1区 数学 Q1 MATHEMATICS
Myungsin Cho
{"title":"K-theoretic Tate-Poitou duality at prime 2","authors":"Myungsin Cho","doi":"10.1016/j.aim.2025.110370","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the result of Blumberg and Mandell on K-theoretic Tate-Poitou duality at odd primes which serves as a spectral refinement of the classical arithmetic Tate-Poitou duality. The duality is formulated for the <span><math><mi>K</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>-localized algebraic K-theory of the ring of <em>p</em>-integers in a number field and its completion using the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-Anderson duality. This paper completes the picture by addressing the prime 2, where the real embeddings of number fields introduce extra complexities. As an application, we identify the homotopy type at prime 2 of the homotopy fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic K-theory of the integers.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"477 ","pages":"Article 110370"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002683","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the result of Blumberg and Mandell on K-theoretic Tate-Poitou duality at odd primes which serves as a spectral refinement of the classical arithmetic Tate-Poitou duality. The duality is formulated for the K(1)-localized algebraic K-theory of the ring of p-integers in a number field and its completion using the Zp-Anderson duality. This paper completes the picture by addressing the prime 2, where the real embeddings of number fields introduce extra complexities. As an application, we identify the homotopy type at prime 2 of the homotopy fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic K-theory of the integers.
素数2处的k -理论态点对偶性
推广了Blumberg和Mandell在奇素数处关于k -理论Tate-Poitou对偶性的结果,作为经典算术Tate-Poitou对偶性的谱细化。给出了数域上p-整数环的K(1)定域代数K理论的对偶性,并用Zp-Anderson对偶补全了它。本文通过解决素数2来完成这一图景,其中数字域的实际嵌入引入了额外的复杂性。作为一个应用,我们利用整数的代数k理论,确定了球谱环切迹的同伦光纤素数2处的同伦类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信