{"title":"Ablation regression behaviors of C/C composites under mechanochemical coupling","authors":"Haodong Liu , Yan Liu , Weixu Zhang , Jianru Wang","doi":"10.1016/j.jeurceramsoc.2025.117550","DOIUrl":null,"url":null,"abstract":"<div><div>In previous work, a theoretical explanation that stress affected ablation thermochemical reactions was proposed for the formation of the typical steady state ablation morphology of C/C composites. However, the mechanism of mechanochemical coupling is still unclear, and the ablation velocity expression took the first-order Taylor expansion term lacks of precision under extreme load environment. This study proposes a mechanism by which stress affects the rate constant of chemical reactions through modifications in the activation energy. A quantitative relationship between stress and chemical reaction rate constant is derived from thermodynamic equilibrium perspective, leading to a revised expression for ablation velocity. Furthermore, the investigation into the effects of mechanochemical coupling on steady state and transient ablation recession behaviors is conducted through microscopic to mesoscopic scale change. The findings from this research provide valuable theoretical insights into the interactions among various physical fields and their influence on ablation recession behaviors of C/C composites.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 15","pages":"Article 117550"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095522192500370X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In previous work, a theoretical explanation that stress affected ablation thermochemical reactions was proposed for the formation of the typical steady state ablation morphology of C/C composites. However, the mechanism of mechanochemical coupling is still unclear, and the ablation velocity expression took the first-order Taylor expansion term lacks of precision under extreme load environment. This study proposes a mechanism by which stress affects the rate constant of chemical reactions through modifications in the activation energy. A quantitative relationship between stress and chemical reaction rate constant is derived from thermodynamic equilibrium perspective, leading to a revised expression for ablation velocity. Furthermore, the investigation into the effects of mechanochemical coupling on steady state and transient ablation recession behaviors is conducted through microscopic to mesoscopic scale change. The findings from this research provide valuable theoretical insights into the interactions among various physical fields and their influence on ablation recession behaviors of C/C composites.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.