Shuang Zhou , Zhiji Tao , Uğur Erkan , Abdurrahim Toktas , Herbert Ho-Ching Iu , Yingqian Zhang , Hao Zhang
{"title":"Multidimensional chaotic signals generation using deep learning and its application in image encryption","authors":"Shuang Zhou , Zhiji Tao , Uğur Erkan , Abdurrahim Toktas , Herbert Ho-Ching Iu , Yingqian Zhang , Hao Zhang","doi":"10.1016/j.engappai.2025.111017","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a novel artificial intelligence implemented approach to generate multi-dimensional chaotic signals using the Long- and Short-Term Time-Series Network (LSTNet) for a newly contrived Two-Stage pixel/bit level Scrambling and Dynamic Diffusion (TSSDD) color image encryption. Initially, we employ the hyperchaotic Lorenz and Chen chaotic systems to produce chaotic signals. Subsequently, the LSTNet model is trained to predict these produced multi-dimensional chaotic sequences and then it generates new multi-dimensional chaotic signals. Through analysis involving phase diagrams, largest Lyapunov exponent (LE), 0–1 test, Permutation Entropy (PE), Sample Entropy (SE), Correlation Dimension (CD) and National Institute of Standards and Technology (NIST), we observe that these applied artificial intelligence signals exhibit high chaotic states and randomness. Finally, we apply these signals to demonstrate the proposed TSSDD color image encryption wherein simulation experiments indicate competitive performance against common attacks.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"156 ","pages":"Article 111017"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625010176","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a novel artificial intelligence implemented approach to generate multi-dimensional chaotic signals using the Long- and Short-Term Time-Series Network (LSTNet) for a newly contrived Two-Stage pixel/bit level Scrambling and Dynamic Diffusion (TSSDD) color image encryption. Initially, we employ the hyperchaotic Lorenz and Chen chaotic systems to produce chaotic signals. Subsequently, the LSTNet model is trained to predict these produced multi-dimensional chaotic sequences and then it generates new multi-dimensional chaotic signals. Through analysis involving phase diagrams, largest Lyapunov exponent (LE), 0–1 test, Permutation Entropy (PE), Sample Entropy (SE), Correlation Dimension (CD) and National Institute of Standards and Technology (NIST), we observe that these applied artificial intelligence signals exhibit high chaotic states and randomness. Finally, we apply these signals to demonstrate the proposed TSSDD color image encryption wherein simulation experiments indicate competitive performance against common attacks.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.