Neural network-based adaptive prescribed-time bipartite flocking for uncertain networked multi-agent systems

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xian Qing, Weihao Li, Bowen Chen, Boxian Lin, Mengji Shi, Kaiyu Qin
{"title":"Neural network-based adaptive prescribed-time bipartite flocking for uncertain networked multi-agent systems","authors":"Xian Qing,&nbsp;Weihao Li,&nbsp;Bowen Chen,&nbsp;Boxian Lin,&nbsp;Mengji Shi,&nbsp;Kaiyu Qin","doi":"10.1016/j.neucom.2025.130452","DOIUrl":null,"url":null,"abstract":"<div><div>Flocking is a fundamental self-organizing behavior observed in networked agent systems (NASs), wherein agents achieve coordinated group dynamics through mutual interactions. While in dynamic environmental contexts, the demand for flocking behavior to demonstrate rapid responsiveness and robust stability becomes more critical. With this in mind, this paper addresses the adaptive bipartite flocking control problem for NASs, particularly in the presence of compound uncertainties and convergence time constraints. A robust adaptive neural network-based prescribed-time bipartite flocking controller is developed to ensure that, despite uncertainties, all agents achieve flocking behavior within a predefined time. Notably, the settling time can be predefined and remains independent of system parameters such as controller gain, initial agent states, and the communication topology among agents. Additionally, by analyzing the stability conditions of the closed-loop error system, an adaptive weight update law for the neural network estimator is formulated. This updated law allows for effective uncertainty estimation through backpropagation of the flocking control error. Finally, the effectiveness and superiority of the proposed prescribed-time bipartite flocking control scheme are validated through numerical simulations.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"646 ","pages":"Article 130452"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225011245","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Flocking is a fundamental self-organizing behavior observed in networked agent systems (NASs), wherein agents achieve coordinated group dynamics through mutual interactions. While in dynamic environmental contexts, the demand for flocking behavior to demonstrate rapid responsiveness and robust stability becomes more critical. With this in mind, this paper addresses the adaptive bipartite flocking control problem for NASs, particularly in the presence of compound uncertainties and convergence time constraints. A robust adaptive neural network-based prescribed-time bipartite flocking controller is developed to ensure that, despite uncertainties, all agents achieve flocking behavior within a predefined time. Notably, the settling time can be predefined and remains independent of system parameters such as controller gain, initial agent states, and the communication topology among agents. Additionally, by analyzing the stability conditions of the closed-loop error system, an adaptive weight update law for the neural network estimator is formulated. This updated law allows for effective uncertainty estimation through backpropagation of the flocking control error. Finally, the effectiveness and superiority of the proposed prescribed-time bipartite flocking control scheme are validated through numerical simulations.
基于神经网络的不确定网络多智能体系统自适应定时二部蜂拥
群集是网络智能体系统(NASs)中一种基本的自组织行为,智能体通过相互作用实现协调的群体动态。而在动态环境中,对群集行为的需求,以证明快速响应和鲁棒稳定性变得更加重要。考虑到这一点,本文研究了NASs的自适应二部群集控制问题,特别是在存在复合不确定性和收敛时间约束的情况下。提出了一种基于鲁棒自适应神经网络的规定时间二部群集控制器,以确保在不确定的情况下,所有智能体在预定义时间内实现群集行为。值得注意的是,稳定时间可以预先定义,并且与控制器增益、初始代理状态和代理之间的通信拓扑等系统参数无关。此外,通过分析闭环误差系统的稳定性条件,给出了神经网络估计器的自适应权值更新规律。这个更新的定律允许通过群集控制误差的反向传播进行有效的不确定性估计。最后,通过数值仿真验证了所提出的定时二部蜂拥控制方案的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信