{"title":"Vehicular Cloud Computing: A cost-effective alternative to Edge Computing in 5G networks","authors":"Rosario Patanè , Nadjib Achir , Andrea Araldo , Lila Boukhatem","doi":"10.1016/j.comnet.2025.111365","DOIUrl":null,"url":null,"abstract":"<div><div>Edge Computing (EC) is a computational paradigm that involves deploying resources such as CPUs and GPUs near end-users, enabling low-latency applications like augmented reality and real-time gaming. However, deploying and maintaining a vast network of EC nodes is costly, which can explain its limited deployment today. A new paradigm called Vehicular Cloud Computing (VCC) has emerged and inspired interest among researchers and industry. VCC opportunistically utilizes existing and idle vehicular computational resources for external task offloading.</div><div>This work is the first to systematically address the following question: <em>Can VCC replace EC for low-latency applications?</em> Answering this question is highly relevant for Network Operators (NOs), as VCC could eliminate costs associated with EC given that it requires no infrastructural investment. Despite its potential, no systematic study has yet explored the conditions under which VCC can effectively support low-latency applications without relying on EC. This work aims to fill that gap.</div><div>Extensive simulations allow for assessing the crucial scenario factors that determine when this EC-to-VCC substitution is feasible. Considered factors are load, vehicles mobility and density, and availability. Potential for substitution is assessed based on multiple criteria, such as latency, task completion success, and cost. Vehicle mobility is simulated in SUMO, and communication in NS3 5G-LENA. The findings show that VCC can effectively replace EC for low-latency applications, except in extreme cases when the EC is still required (latency <span><math><mrow><mo><</mo><mn>16</mn><mspace></mspace><mi>ms</mi></mrow></math></span>).</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"268 ","pages":"Article 111365"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625003329","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Edge Computing (EC) is a computational paradigm that involves deploying resources such as CPUs and GPUs near end-users, enabling low-latency applications like augmented reality and real-time gaming. However, deploying and maintaining a vast network of EC nodes is costly, which can explain its limited deployment today. A new paradigm called Vehicular Cloud Computing (VCC) has emerged and inspired interest among researchers and industry. VCC opportunistically utilizes existing and idle vehicular computational resources for external task offloading.
This work is the first to systematically address the following question: Can VCC replace EC for low-latency applications? Answering this question is highly relevant for Network Operators (NOs), as VCC could eliminate costs associated with EC given that it requires no infrastructural investment. Despite its potential, no systematic study has yet explored the conditions under which VCC can effectively support low-latency applications without relying on EC. This work aims to fill that gap.
Extensive simulations allow for assessing the crucial scenario factors that determine when this EC-to-VCC substitution is feasible. Considered factors are load, vehicles mobility and density, and availability. Potential for substitution is assessed based on multiple criteria, such as latency, task completion success, and cost. Vehicle mobility is simulated in SUMO, and communication in NS3 5G-LENA. The findings show that VCC can effectively replace EC for low-latency applications, except in extreme cases when the EC is still required (latency ).
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.