Junyu Wang , Jia Li , Manon Buist-Homan , Martin C. Harmsen , Han Moshage
{"title":"Extracellular vesicle-dependent crosstalk between hepatic stellate cells and Kupffer cells promotes their mutual activation","authors":"Junyu Wang , Jia Li , Manon Buist-Homan , Martin C. Harmsen , Han Moshage","doi":"10.1016/j.bbadis.2025.167914","DOIUrl":null,"url":null,"abstract":"<div><h3>Background & aims</h3><div>Hepatic fibrosis results from hepatic stellate cell (HSC) activation and excessive extracellular matrix (ECM) deposition, driven by chronic inflammation. Kupffer cells (KCs) play a central role in HSC activation. We previously showed that HSC-secreted factors, particularly extracellular vesicles (EVs), activate KCs. However, the reciprocal effects of activated KCs on HSCs remain poorly understood. This study investigates the bidirectional crosstalk between HSCs and KCs, focusing on the role of KC-derived EVs in regulating HSC activation and fibrosis progression.</div></div><div><h3>Methods</h3><div>Primary HSCs and KCs were isolated from male Wistar rats. HSCs were co-cultured with KCs for 24 h to assess inflammatory and activation markers. LPS-stimulated KC-derived EVs and controls were administered to HSCs on day 1. LPS and the Toll-like receptor 4 (TLR4) inhibitor TAK-242 were used to investigate the intercellular communication in detail.</div></div><div><h3>Results</h3><div>Co-cultured HSCs and KCs showed mutual activation, demonstrated by elevated inflammatory markers in both cell types and enhanced HSC pro-fibrotic activation. Pro-inflammatory (LPS)-activated KCs amplified HSC activation in a TLR4-dependent fashion. Part of this augmented HSC activation was attributed to EVs.</div></div><div><h3>Conclusions</h3><div>In co-culture, KCs and HSCs show mutual activation in a TLR4-dependent fashion. This bidirectional activation is augmented by pro-inflammatory mediators. KC-derived EVs (partially) activate HSCs, which might contribute to progression of liver fibrosis <em>in vivo</em>. Modulating KC activation, such as by blocking TLR4 signaling, may alter EV secretion or cargo composition, reducing HSC activation and fibrosis progression. Targeting this EV-mediated crosstalk could provide novel therapeutic strategies for liver fibrosis.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 7","pages":"Article 167914"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925002625","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims
Hepatic fibrosis results from hepatic stellate cell (HSC) activation and excessive extracellular matrix (ECM) deposition, driven by chronic inflammation. Kupffer cells (KCs) play a central role in HSC activation. We previously showed that HSC-secreted factors, particularly extracellular vesicles (EVs), activate KCs. However, the reciprocal effects of activated KCs on HSCs remain poorly understood. This study investigates the bidirectional crosstalk between HSCs and KCs, focusing on the role of KC-derived EVs in regulating HSC activation and fibrosis progression.
Methods
Primary HSCs and KCs were isolated from male Wistar rats. HSCs were co-cultured with KCs for 24 h to assess inflammatory and activation markers. LPS-stimulated KC-derived EVs and controls were administered to HSCs on day 1. LPS and the Toll-like receptor 4 (TLR4) inhibitor TAK-242 were used to investigate the intercellular communication in detail.
Results
Co-cultured HSCs and KCs showed mutual activation, demonstrated by elevated inflammatory markers in both cell types and enhanced HSC pro-fibrotic activation. Pro-inflammatory (LPS)-activated KCs amplified HSC activation in a TLR4-dependent fashion. Part of this augmented HSC activation was attributed to EVs.
Conclusions
In co-culture, KCs and HSCs show mutual activation in a TLR4-dependent fashion. This bidirectional activation is augmented by pro-inflammatory mediators. KC-derived EVs (partially) activate HSCs, which might contribute to progression of liver fibrosis in vivo. Modulating KC activation, such as by blocking TLR4 signaling, may alter EV secretion or cargo composition, reducing HSC activation and fibrosis progression. Targeting this EV-mediated crosstalk could provide novel therapeutic strategies for liver fibrosis.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.