{"title":"Driven transitions between megastable quantized orbits","authors":"Álvaro G. López , Rahil N. Valani","doi":"10.1016/j.chaos.2025.116549","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a nonlinear oscillator with state-dependent time-delay that displays a countably infinite number of nested limit cycle attractors, <em>i.e.</em> megastability. In the low-memory regime, the equation reduces to a self-excited nonlinear oscillator and we use averaging methods to analytically show quasilinear increasing amplitude of the megastable spectrum of quantized quasicircular orbits. We further assign a mechanical energy to each orbit using the Lyapunov energy function and obtain a quadratically increasing energy spectrum and (almost) constant frequency spectrum. We demonstrate transitions between different quantized orbits, i.e. different energy levels, by subjecting the system to an external finite-time harmonic driving. In the absence of external driving force, the oscillator asymptotes towards one of the megastable quantized orbits having a fixed average energy. For a large driving amplitude with frequency close to the limit cycle frequency, resonance drives transitions to higher energy levels. Alternatively, for large driving amplitude with frequency slightly detuned from limit-cycle frequency, beating effects can lead to transitions to lower energy levels. Such driven transitions between quantized orbits form a classical analog of quantum jumps. For excitations to higher energy levels, we show amplitude locking where nearby values of driving amplitudes result in the same response amplitude, i.e. the same final higher energy level. We rationalize this effect based on the basins of different limit cycles in phase space. From a practical viewpoint, our work might find applications in physical and engineering system where controlled transitions between several limit cycles of a multistable dynamical system is desired.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"198 ","pages":"Article 116549"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925005624","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a nonlinear oscillator with state-dependent time-delay that displays a countably infinite number of nested limit cycle attractors, i.e. megastability. In the low-memory regime, the equation reduces to a self-excited nonlinear oscillator and we use averaging methods to analytically show quasilinear increasing amplitude of the megastable spectrum of quantized quasicircular orbits. We further assign a mechanical energy to each orbit using the Lyapunov energy function and obtain a quadratically increasing energy spectrum and (almost) constant frequency spectrum. We demonstrate transitions between different quantized orbits, i.e. different energy levels, by subjecting the system to an external finite-time harmonic driving. In the absence of external driving force, the oscillator asymptotes towards one of the megastable quantized orbits having a fixed average energy. For a large driving amplitude with frequency close to the limit cycle frequency, resonance drives transitions to higher energy levels. Alternatively, for large driving amplitude with frequency slightly detuned from limit-cycle frequency, beating effects can lead to transitions to lower energy levels. Such driven transitions between quantized orbits form a classical analog of quantum jumps. For excitations to higher energy levels, we show amplitude locking where nearby values of driving amplitudes result in the same response amplitude, i.e. the same final higher energy level. We rationalize this effect based on the basins of different limit cycles in phase space. From a practical viewpoint, our work might find applications in physical and engineering system where controlled transitions between several limit cycles of a multistable dynamical system is desired.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.