Xiang-Yu Dai , Zheng-Qi Shen , Yating Zhang, Hanxue Liu, Meng Ren, Peisen Wang, Ji Li, Xuling Xue, Hong-Ke Liu
{"title":"Synthesis and anticancer studies of Ru/Ir arene complexes bearing oleanolic acid in acute promyelocytic leukemia cells","authors":"Xiang-Yu Dai , Zheng-Qi Shen , Yating Zhang, Hanxue Liu, Meng Ren, Peisen Wang, Ji Li, Xuling Xue, Hong-Ke Liu","doi":"10.1016/j.jinorgbio.2025.112959","DOIUrl":null,"url":null,"abstract":"<div><div>Acute leukemia, a cancer originating in the bone marrow and blood-forming tissues, poses a significant threat to human health. Chemotherapy may cause a range of side effects and further cause greater suffering to the patients. Thus, reducing the toxicity of the drugs for treating leukemia has become a significant challenge. In this study, we developed two non‑platinum anticancer agents, <strong>ole-Ru</strong> and <strong>ole-Ir</strong>, by fusing the natural product oleanolic acid as the ligand into two metal (ruthenium and iridium) precursors. <strong>Ole-Ru</strong> and <strong>ole-Ir</strong> not only exhibited remarkable selectivity and cytotoxicity against NB4 cells through the apoptosis pathway, but also demonstrated low toxicity towards normal lung fibroblast cells, suggesting their potential for targeted treatment of acute leukemia cells. This work presents a rational design strategy for metal-based anticancer complexes aimed at inhibiting NB4 cells and expanded the scope of metallodrugs used in the treatment of leukemia.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"271 ","pages":"Article 112959"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425001394","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute leukemia, a cancer originating in the bone marrow and blood-forming tissues, poses a significant threat to human health. Chemotherapy may cause a range of side effects and further cause greater suffering to the patients. Thus, reducing the toxicity of the drugs for treating leukemia has become a significant challenge. In this study, we developed two non‑platinum anticancer agents, ole-Ru and ole-Ir, by fusing the natural product oleanolic acid as the ligand into two metal (ruthenium and iridium) precursors. Ole-Ru and ole-Ir not only exhibited remarkable selectivity and cytotoxicity against NB4 cells through the apoptosis pathway, but also demonstrated low toxicity towards normal lung fibroblast cells, suggesting their potential for targeted treatment of acute leukemia cells. This work presents a rational design strategy for metal-based anticancer complexes aimed at inhibiting NB4 cells and expanded the scope of metallodrugs used in the treatment of leukemia.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.