Caterina Urban , Pavle Subotić , Filip Drobnjaković
{"title":"Static analysis by abstract interpretation against data leakage in machine learning","authors":"Caterina Urban , Pavle Subotić , Filip Drobnjaković","doi":"10.1016/j.scico.2025.103338","DOIUrl":null,"url":null,"abstract":"<div><div>Data leakage is a well-known problem in machine learning which occurs when the training and testing datasets are not independent. This phenomenon leads to unreliably overly optimistic accuracy estimates at training time, followed by a significant drop in performance when models are deployed in the real world. This can be dangerous, notably when models are used for risk prediction in high-stakes applications. In this paper, we propose an abstract interpretation-based static analysis to prove the absence of data leakage at development time, long before model deployment and even before model training. We implemented it in the <span>NBLyzer</span> framework and we demonstrate its performance and precision on 2111 Jupyter notebooks from the Kaggle competition platform.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"246 ","pages":"Article 103338"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325000772","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Data leakage is a well-known problem in machine learning which occurs when the training and testing datasets are not independent. This phenomenon leads to unreliably overly optimistic accuracy estimates at training time, followed by a significant drop in performance when models are deployed in the real world. This can be dangerous, notably when models are used for risk prediction in high-stakes applications. In this paper, we propose an abstract interpretation-based static analysis to prove the absence of data leakage at development time, long before model deployment and even before model training. We implemented it in the NBLyzer framework and we demonstrate its performance and precision on 2111 Jupyter notebooks from the Kaggle competition platform.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.