A condition for the finite time blow up of the incompressible Navier–Stokes equations in the whole space

IF 1.4 Q2 MATHEMATICS, APPLIED
Abdelhafid Younsi
{"title":"A condition for the finite time blow up of the incompressible Navier–Stokes equations in the whole space","authors":"Abdelhafid Younsi","doi":"10.1016/j.rinam.2025.100590","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is interested in the existence of singularities for solutions of the Navier–Stokes equations in the whole space. We demonstrate the existence of initial data that leads to the unboundedness of the corresponding strong solution within a finite time. Our approach relies on lower and upper bounds of rates of decay for solutions to the Navier–Stokes equations. This result provides valuable insights into significant open problems in both physics and mathematics.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100590"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is interested in the existence of singularities for solutions of the Navier–Stokes equations in the whole space. We demonstrate the existence of initial data that leads to the unboundedness of the corresponding strong solution within a finite time. Our approach relies on lower and upper bounds of rates of decay for solutions to the Navier–Stokes equations. This result provides valuable insights into significant open problems in both physics and mathematics.
全空间不可压缩Navier-Stokes方程有限时间爆破的条件
本文研究了Navier-Stokes方程解在整个空间中的奇异性。我们证明了初始数据的存在性,使得相应的强解在有限时间内无界。我们的方法依赖于Navier-Stokes方程解的衰减率的下界和上界。这一结果为物理学和数学中的重大开放问题提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信