Junqi Lu , Bosen Liu , Cuicui Pei , Qingan Qiu , Li Yang
{"title":"Learning to optimize termination decisions under hybrid uncertainty of system lifetime and task duration","authors":"Junqi Lu , Bosen Liu , Cuicui Pei , Qingan Qiu , Li Yang","doi":"10.1016/j.cie.2025.111208","DOIUrl":null,"url":null,"abstract":"<div><div>The lifetime distribution of engineering systems typically demonstrates significant heterogeneity, influenced by various factors such as material quality, manufacturing variations, usage intensity, and environmental conditions. Meanwhile, the distribution of random task durations can vary considerably, depending on resource availability, task complexity, and external disruptions. Accurately characterizing these heterogeneities is vital for improving the overall operational efficiency of engineering systems. This study explores optimal task termination decisions that effectively address the hybrid uncertainty stemming from the diverse distributions of system lifetimes and task durations. Utilizing a Bayesian statistical learning framework, the study models the uncertainties associated with random task durations and system lifetimes through unobserved distribution parameters. Bayesian parameter updating techniques are employed to derive posterior distributions for these parameters, informed by observed data collected during task executions regarding task durations and system lifetimes. By iteratively refining these parameters, the study dynamically determines the optimal task termination time. Furthermore, the properties of the optimal task termination decisions are investigated within a Markov Decision Process framework. A series of numerical examples are presented to validate the theoretical findings and highlight the practical implications of the proposed approach. The experimental results reveal a potential cost reduction of up to 45.11% compared to existing policies, emphasizing the efficacy and of the proposed methodology.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"206 ","pages":"Article 111208"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225003547","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The lifetime distribution of engineering systems typically demonstrates significant heterogeneity, influenced by various factors such as material quality, manufacturing variations, usage intensity, and environmental conditions. Meanwhile, the distribution of random task durations can vary considerably, depending on resource availability, task complexity, and external disruptions. Accurately characterizing these heterogeneities is vital for improving the overall operational efficiency of engineering systems. This study explores optimal task termination decisions that effectively address the hybrid uncertainty stemming from the diverse distributions of system lifetimes and task durations. Utilizing a Bayesian statistical learning framework, the study models the uncertainties associated with random task durations and system lifetimes through unobserved distribution parameters. Bayesian parameter updating techniques are employed to derive posterior distributions for these parameters, informed by observed data collected during task executions regarding task durations and system lifetimes. By iteratively refining these parameters, the study dynamically determines the optimal task termination time. Furthermore, the properties of the optimal task termination decisions are investigated within a Markov Decision Process framework. A series of numerical examples are presented to validate the theoretical findings and highlight the practical implications of the proposed approach. The experimental results reveal a potential cost reduction of up to 45.11% compared to existing policies, emphasizing the efficacy and of the proposed methodology.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.