Prediction of hydraulic fracture parameters in tight gas reservoir using physics-constrained neural network

0 ENERGY & FUELS
Huiying Tang , Shangui Luo , Ge He , Honglin Xiao , Yulong Zhao , Qinzhuo Liao , Liehui Zhang
{"title":"Prediction of hydraulic fracture parameters in tight gas reservoir using physics-constrained neural network","authors":"Huiying Tang ,&nbsp;Shangui Luo ,&nbsp;Ge He ,&nbsp;Honglin Xiao ,&nbsp;Yulong Zhao ,&nbsp;Qinzhuo Liao ,&nbsp;Liehui Zhang","doi":"10.1016/j.geoen.2025.214001","DOIUrl":null,"url":null,"abstract":"<div><div>The prediction of hydraulic fracture parameters is crucial for hydraulic fracturing evaluation and design. For field scale problems, the geometries of hydraulic fractures are mostly evaluated with numerical simulations, assisted by monitoring methods such as micro-seismic, tracer, and optical fiber techniques. However, such simulations are often time-consuming and difficult to meet the computational efficiency requirement for treatment parameter optimizations. In this paper, a physics-constrained neural network (PCNN) model, with the modified PKN model as its loss function, is proposed to predict the fracture parameters in tight gas reservoirs. Random search hyperparameter optimization, 10-fold cross validation, and ensemble learning are further used to increase the model accuracy. This model is systematically validated through hydraulic fracturing numerical simulations and field monitoring data. The results indicate that compared with the modified PKN model and the deep neural network (DNN), the PCNN shows the best generalization ability and prediction accuracy, while also avoiding predictions that violate physical laws. For heterogeneous reservoirs, the PCNN model can still provide a fast and reasonable prediction of fracture parameters.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"253 ","pages":"Article 214001"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025003598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of hydraulic fracture parameters is crucial for hydraulic fracturing evaluation and design. For field scale problems, the geometries of hydraulic fractures are mostly evaluated with numerical simulations, assisted by monitoring methods such as micro-seismic, tracer, and optical fiber techniques. However, such simulations are often time-consuming and difficult to meet the computational efficiency requirement for treatment parameter optimizations. In this paper, a physics-constrained neural network (PCNN) model, with the modified PKN model as its loss function, is proposed to predict the fracture parameters in tight gas reservoirs. Random search hyperparameter optimization, 10-fold cross validation, and ensemble learning are further used to increase the model accuracy. This model is systematically validated through hydraulic fracturing numerical simulations and field monitoring data. The results indicate that compared with the modified PKN model and the deep neural network (DNN), the PCNN shows the best generalization ability and prediction accuracy, while also avoiding predictions that violate physical laws. For heterogeneous reservoirs, the PCNN model can still provide a fast and reasonable prediction of fracture parameters.
基于物理约束神经网络的致密气藏水力裂缝参数预测
水力压裂参数的预测是水力压裂评价和设计的关键。对于现场规模的问题,水力裂缝的几何形状大多通过数值模拟来评估,并辅以微地震、示踪剂和光纤技术等监测方法。然而,这种模拟往往耗时且难以满足处理参数优化的计算效率要求。本文提出了一种物理约束神经网络(PCNN)模型,以改进的PKN模型作为损失函数,对致密气藏裂缝参数进行预测。采用随机搜索超参数优化、10倍交叉验证和集成学习来提高模型精度。通过水力压裂数值模拟和现场监测数据对该模型进行了系统验证。结果表明,与改进的PKN模型和深度神经网络(DNN)相比,PCNN模型具有最好的泛化能力和预测精度,同时也避免了违反物理定律的预测。对于非均质储层,PCNN模型仍能提供快速合理的裂缝参数预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信