{"title":"Single-molecule DNA analysis implicates brain mitochondria pathology in bipolar disorder","authors":"Hiroki Ohtani, Ryuya Ichikawa, Kanako Mori, Tadafumi Kato, Masaki Nishioka","doi":"10.1038/s41380-025-03071-4","DOIUrl":null,"url":null,"abstract":"<p>Bipolar disorder (BD), characterized by recurrent manic and depressive episodes, is a global medical challenge. Based on its high heritability, various genomic studies have elucidated the genetic architecture of BD. Nonetheless, the specific genomic mechanisms underpinning BD pathogenesis remain elusive. Among under-investigated genomic factors, mitochondrial variants—particularly brain heteroplasmic variants—are of particular interest, given the critical role of mitochondria in neural function and the frequent psychiatric symptoms observed in mitochondrial diseases. In this study, we analyzed 163 brain DNA samples from 54 BD patients, 54 controls, and 55 schizophrenia patients to investigate the association between BD and mitochondrial heteroplasmic variants. Duplex molecular barcoding sequencing was employed for single-molecule resolution. We found an enrichment of ultra-rare heteroplasmic variants with allele fractions exceeding 1% in BD. Among them, potentially pathogenic variants, including m.3243A>G, loss-of-function variants, and rRNA variants, were particularly enriched in BD. In contrast, single-molecule analysis did not reveal a general trend of increases in low-level heteroplasmic variants in BD, in terms of per-base mutation frequency and heteroplasmic fractions. Thus, a subset of BD patients may be stratified according to the presence of ultra-rare mitochondrial variants. Our findings provide a foundation for future research into targeted therapeutic strategies for BD, grounded in genomic stratification by mitochondrial variants.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"244 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-03071-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bipolar disorder (BD), characterized by recurrent manic and depressive episodes, is a global medical challenge. Based on its high heritability, various genomic studies have elucidated the genetic architecture of BD. Nonetheless, the specific genomic mechanisms underpinning BD pathogenesis remain elusive. Among under-investigated genomic factors, mitochondrial variants—particularly brain heteroplasmic variants—are of particular interest, given the critical role of mitochondria in neural function and the frequent psychiatric symptoms observed in mitochondrial diseases. In this study, we analyzed 163 brain DNA samples from 54 BD patients, 54 controls, and 55 schizophrenia patients to investigate the association between BD and mitochondrial heteroplasmic variants. Duplex molecular barcoding sequencing was employed for single-molecule resolution. We found an enrichment of ultra-rare heteroplasmic variants with allele fractions exceeding 1% in BD. Among them, potentially pathogenic variants, including m.3243A>G, loss-of-function variants, and rRNA variants, were particularly enriched in BD. In contrast, single-molecule analysis did not reveal a general trend of increases in low-level heteroplasmic variants in BD, in terms of per-base mutation frequency and heteroplasmic fractions. Thus, a subset of BD patients may be stratified according to the presence of ultra-rare mitochondrial variants. Our findings provide a foundation for future research into targeted therapeutic strategies for BD, grounded in genomic stratification by mitochondrial variants.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.