Sen Gao, Wei Guo, Gaofei Xu, Ben Liu, Yu Sun, Bo Yuan
{"title":"A lightweight YOLO network using temporal features for high-resolution sonar segmentation","authors":"Sen Gao, Wei Guo, Gaofei Xu, Ben Liu, Yu Sun, Bo Yuan","doi":"10.3389/fmars.2025.1581794","DOIUrl":null,"url":null,"abstract":"IntroductionHigh-resolution sonar systems are critical for underwater robots to obtain precise environmental perception. However, the computational demands of processing sonar imagery in real-time pose significant challenges for autonomous underwater vehicles (AUVs) operating in dynamic environments. Current segmentation methods often struggle to balance processing speed with accuracy.MethodsWe propose a novel YOLO-based segmentation framework featuring: (1) A lightweight backbone(ghostnet) network optimized for sonar imagery processing (2) A bypass BiLSTM network for temporal feature learning across consecutive frames. The system processes non-keyframes by predicting semantic vectors through the trained BiLSTM model, selectively skipping computational layers to enhance efficiency. The model was trained and evaluated on a high-resolution sonar dataset collected using an AUV-mounted Oculus MD750d multibeam forward-looking sonar in two distinct underwater environments.ResultsImplementation on Nvidia Jetson TX2 demonstrated significant performance improvements. (1) Processing latency reduced to 87.4 ms (keyframes) and 35.3 ms (non-keyframes)(2)Maintained competitive segmentation accuracy compared to conventional methods and achieved low latency.DiscussionThe proposed architecture successfully addresses the speed-accuracy trade-off in sonar image segmentation through its innovative temporal feature utilization and computational skipping mechanism. The significant latency reduction enables more responsive AUV navigation without compromising perception quality. The newly introduced dataset fills an important gap in high-resolution sonar benchmarking. Future work will focus on optimizing the keyframe selection algorithm and expanding the dataset to include more complex underwater scenarios.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"58 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1581794","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionHigh-resolution sonar systems are critical for underwater robots to obtain precise environmental perception. However, the computational demands of processing sonar imagery in real-time pose significant challenges for autonomous underwater vehicles (AUVs) operating in dynamic environments. Current segmentation methods often struggle to balance processing speed with accuracy.MethodsWe propose a novel YOLO-based segmentation framework featuring: (1) A lightweight backbone(ghostnet) network optimized for sonar imagery processing (2) A bypass BiLSTM network for temporal feature learning across consecutive frames. The system processes non-keyframes by predicting semantic vectors through the trained BiLSTM model, selectively skipping computational layers to enhance efficiency. The model was trained and evaluated on a high-resolution sonar dataset collected using an AUV-mounted Oculus MD750d multibeam forward-looking sonar in two distinct underwater environments.ResultsImplementation on Nvidia Jetson TX2 demonstrated significant performance improvements. (1) Processing latency reduced to 87.4 ms (keyframes) and 35.3 ms (non-keyframes)(2)Maintained competitive segmentation accuracy compared to conventional methods and achieved low latency.DiscussionThe proposed architecture successfully addresses the speed-accuracy trade-off in sonar image segmentation through its innovative temporal feature utilization and computational skipping mechanism. The significant latency reduction enables more responsive AUV navigation without compromising perception quality. The newly introduced dataset fills an important gap in high-resolution sonar benchmarking. Future work will focus on optimizing the keyframe selection algorithm and expanding the dataset to include more complex underwater scenarios.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.