Open the Pores: Particles with Fully Accessible Hierarchical Pore Networks by Controlling Phase Separation in Confinement

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Umair Sultan, Alexander Götz, Nicolas Salcedo, Lukas Sandner, Johannes Martinus Peter Beunen, Alexander Kichigin, Carola Vorndran, Paolo Malgaretti, Benjamin Apeleo Zubiri, Matthias Thommes, Jens Harting, Erdmann Spiecker, Nicolas Vogel
{"title":"Open the Pores: Particles with Fully Accessible Hierarchical Pore Networks by Controlling Phase Separation in Confinement","authors":"Umair Sultan, Alexander Götz, Nicolas Salcedo, Lukas Sandner, Johannes Martinus Peter Beunen, Alexander Kichigin, Carola Vorndran, Paolo Malgaretti, Benjamin Apeleo Zubiri, Matthias Thommes, Jens Harting, Erdmann Spiecker, Nicolas Vogel","doi":"10.1021/jacs.5c03923","DOIUrl":null,"url":null,"abstract":"Hierarchical porous materials combine large surface area with efficient mass transport, in particular when macropores directly connect mesopores. Polymerization-induced spinodal decomposition of poly(ethylene glycol) and tetraethyl orthosilicate can produce such macro-mesoporous material in bulk. However, the confinement of this spinodal decomposition process to emulsion droplets typically produces porous particles with a dense silica shell that blocks pore accessibility. Here, we address this issue by controlling the interfacial energies of the two phases undergoing spinodal decomposition within the emulsion droplet. We use surfactant mixtures to induce neutral wetting to prevent shell formation and generate particles with fully open, accessible and interconnected pore systems. Lattice Boltzmann simulations corroborate the experimental findings and underline that neutral wetting conditions with a contact angle to the continuous phase of ∼90° for both phases are essential to form open surface pores. Our work provides a simple strategy for producing hierarchical porous particles with controlled surface and bulk porosity between ∼200 and ∼6000 nm, expanding their potential for applications in catalysis, separation technologies, and adsorption.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"148 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03923","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical porous materials combine large surface area with efficient mass transport, in particular when macropores directly connect mesopores. Polymerization-induced spinodal decomposition of poly(ethylene glycol) and tetraethyl orthosilicate can produce such macro-mesoporous material in bulk. However, the confinement of this spinodal decomposition process to emulsion droplets typically produces porous particles with a dense silica shell that blocks pore accessibility. Here, we address this issue by controlling the interfacial energies of the two phases undergoing spinodal decomposition within the emulsion droplet. We use surfactant mixtures to induce neutral wetting to prevent shell formation and generate particles with fully open, accessible and interconnected pore systems. Lattice Boltzmann simulations corroborate the experimental findings and underline that neutral wetting conditions with a contact angle to the continuous phase of ∼90° for both phases are essential to form open surface pores. Our work provides a simple strategy for producing hierarchical porous particles with controlled surface and bulk porosity between ∼200 and ∼6000 nm, expanding their potential for applications in catalysis, separation technologies, and adsorption.

Abstract Image

打开孔隙:在限制条件下控制相分离的具有完全可访问的分层孔隙网络的颗粒
分层多孔材料结合了大表面积和有效的质量传递,特别是当大孔直接连接介孔时。聚合诱导的聚乙二醇和正硅酸四乙酯的spinodal分解可以批量生产这种大介孔材料。然而,这种单轴分解过程对乳化液液滴的限制通常会产生多孔颗粒,其致密的二氧化硅外壳阻碍了孔隙的可及性。在这里,我们通过控制两相的界面能来解决这个问题,这两相在乳化液滴内进行spinodal分解。我们使用表面活性剂混合物来诱导中性润湿,以防止壳的形成,并生成具有完全开放、可接近且相互连接的孔隙系统的颗粒。晶格玻尔兹曼模拟证实了实验结果,并强调两相连续相接触角为~ 90°的中性润湿条件对于形成开放的表面孔隙是必不可少的。我们的工作提供了一种简单的策略来生产具有控制表面和体积孔隙度在~ 200和~ 6000 nm之间的分层多孔颗粒,扩大了它们在催化、分离技术和吸附方面的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信