Andrew W. Daman, Anthony C. Antonelli, Gil Redelman-Sidi, Lucinda Paddock, Shireen Khayat, Mythili Ketavarapu, Jin Gyu Cheong, Leonardo F. Jurado, Anna Benjamin, Song Jiang, Dughan Ahimovic, Victoria R. Lawless, Michael J. Bale, Oleg Loutochin, Victor A. McPherson, Maziar Divangahi, Rachel E. Niec, Dana Pe’er, Eugene Pietzak, Steven Z. Josefowicz, Michael S. Glickman
{"title":"Microbial cancer immunotherapy reprograms hematopoiesis to enhance myeloid-driven anti-tumor immunity","authors":"Andrew W. Daman, Anthony C. Antonelli, Gil Redelman-Sidi, Lucinda Paddock, Shireen Khayat, Mythili Ketavarapu, Jin Gyu Cheong, Leonardo F. Jurado, Anna Benjamin, Song Jiang, Dughan Ahimovic, Victoria R. Lawless, Michael J. Bale, Oleg Loutochin, Victor A. McPherson, Maziar Divangahi, Rachel E. Niec, Dana Pe’er, Eugene Pietzak, Steven Z. Josefowicz, Michael S. Glickman","doi":"10.1016/j.ccell.2025.05.002","DOIUrl":null,"url":null,"abstract":"<em>Mycobacterium bovis</em> Bacillus Calmette-Guérin (BCG) is the vaccine against tuberculosis and an immunotherapy for bladder cancer. When administered intravenously, BCG reprograms bone marrow hematopoietic stem and progenitor cells (HSPCs), leading to heterologous protection against infections. Whether HSPC reprogramming contributes to the anti-tumor effects of BCG administered into the bladder is unknown. We demonstrate that BCG administered in the bladder colonizes the bone marrow and, in both mice and humans, reprograms HSPCs to alter and amplify myelopoiesis. BCG-reprogrammed HSPCs are sufficient to confer augmented anti-tumor immunity through production of neutrophils, monocytes, and dendritic cells that broadly remodel the tumor microenvironment, drive T cell-dependent anti-tumor responses, and synergize with checkpoint blockade. We conclude that bladder BCG acts systemically through hematopoiesis, highlighting the broad potential of HSPC reprogramming to enhance the innate drivers of T cell-dependent tumor immunity.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"29 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.05.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is the vaccine against tuberculosis and an immunotherapy for bladder cancer. When administered intravenously, BCG reprograms bone marrow hematopoietic stem and progenitor cells (HSPCs), leading to heterologous protection against infections. Whether HSPC reprogramming contributes to the anti-tumor effects of BCG administered into the bladder is unknown. We demonstrate that BCG administered in the bladder colonizes the bone marrow and, in both mice and humans, reprograms HSPCs to alter and amplify myelopoiesis. BCG-reprogrammed HSPCs are sufficient to confer augmented anti-tumor immunity through production of neutrophils, monocytes, and dendritic cells that broadly remodel the tumor microenvironment, drive T cell-dependent anti-tumor responses, and synergize with checkpoint blockade. We conclude that bladder BCG acts systemically through hematopoiesis, highlighting the broad potential of HSPC reprogramming to enhance the innate drivers of T cell-dependent tumor immunity.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.