The State Preparation of Multivariate Normal Distributions using Tree Tensor Network

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-05-28 DOI:10.22331/q-2025-05-28-1755
Hidetaka Manabe, Yuichi Sano
{"title":"The State Preparation of Multivariate Normal Distributions using Tree Tensor Network","authors":"Hidetaka Manabe, Yuichi Sano","doi":"10.22331/q-2025-05-28-1755","DOIUrl":null,"url":null,"abstract":"The quantum state preparation of probability distributions is an important subroutine for many quantum algorithms. When embedding $D$-dimensional multivariate probability distributions by discretizing each dimension into $2^n$ points, we need a state preparation circuit comprising a total of $nD$ qubits, which is often difficult to compile. In this study, we propose a scalable method to generate state preparation circuits for $D$-dimensional multivariate normal distributions, utilizing tree tensor networks (TTN). We establish theoretical guarantees that multivariate normal distributions with 1D correlation structures can be efficiently represented using TTN. Based on these analyses, we propose a compilation method that uses automatic structural optimization to find the most efficient network structure and compact circuit. We apply our method to state preparation circuits for various high-dimensional random multivariate normal distributions. The numerical results suggest that our method can dramatically reduce the circuit depth and CNOT count while maintaining fidelity compared to existing approaches.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"14 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-28-1755","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The quantum state preparation of probability distributions is an important subroutine for many quantum algorithms. When embedding $D$-dimensional multivariate probability distributions by discretizing each dimension into $2^n$ points, we need a state preparation circuit comprising a total of $nD$ qubits, which is often difficult to compile. In this study, we propose a scalable method to generate state preparation circuits for $D$-dimensional multivariate normal distributions, utilizing tree tensor networks (TTN). We establish theoretical guarantees that multivariate normal distributions with 1D correlation structures can be efficiently represented using TTN. Based on these analyses, we propose a compilation method that uses automatic structural optimization to find the most efficient network structure and compact circuit. We apply our method to state preparation circuits for various high-dimensional random multivariate normal distributions. The numerical results suggest that our method can dramatically reduce the circuit depth and CNOT count while maintaining fidelity compared to existing approaches.
基于树张量网络的多元正态分布状态准备
概率分布的量子态制备是许多量子算法的重要子程序。当通过将每个维度离散为$2^n$点来嵌入$D$维多元概率分布时,我们需要一个由$nD$量子比特组成的状态准备电路,这通常很难编译。在这项研究中,我们提出了一种可扩展的方法,利用树张量网络(TTN)为D维多元正态分布生成状态准备电路。我们建立了理论保证,具有一维相关结构的多元正态分布可以有效地用TTN表示。在此基础上,我们提出了一种利用自动结构优化来寻找最有效的网络结构和最紧凑的电路的编译方法。我们将该方法应用于各种高维随机多元正态分布的状态准备电路。数值结果表明,与现有方法相比,我们的方法可以显著减少电路深度和CNOT计数,同时保持保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信