{"title":"Codelivery of NGFR100W and VEGFA mRNA Enhances Vascular and Neural Repair in Diabetic Peripheral Neuropathy","authors":"Wenjing Wang, Xiang Yu, Zheng Yang, Yu Zhang, Wen Yang, Yingjie Xu, Wei Xu","doi":"10.2337/db24-0989","DOIUrl":null,"url":null,"abstract":"Diabetic peripheral neuropathy (DPN) poses significant clinical challenges due to progressive nerve degeneration and vascular insufficiency. To address both neural and vascular complications simultaneously, we employed an mRNA-based protein replacement therapy. In this study, leveraging mRNA template design, structure-based screening identified NGFR100W as a variant dissociating neuroprotective and nociceptive functions, demonstrating enhanced neuritogenic activity without pain sensitization. Additionally, transcriptome analysis of NGF mutants versus wild type further reveals the potential mechanism by which NGFR100W uncouples neuroprotective and nociceptive pathways. We cotransfected chemically modified NGFR100W mRNA and vascular endothelial growth factor A (VEGFA) mRNA, and the conditioned media collected from this transfection promoted endothelial cell migration, tubulogenesis, and neurite outgrowth. In a diabetic mouse model, combination therapy with lipid nanoparticle codelivery of NGFR100W and VEGFA mRNA significantly improved blood flow in the plantar region and mitigated nerve function decline compared with monotherapy. Histological analysis showed increased microvessel formation and higher intraepidermal nerve fiber density in treated mice. Our findings highlight the therapeutic potential of NGFR100W and VEGFA mRNA coadministration for DPN, suggesting that protein supplementation via mRNA could offer a novel strategy for clinical intervention in some chronic medical conditions. ARTICLE HIGHLIGHTS We aimed to develop a dual-targeted mRNA-based therapy to address both neural degeneration and vascular insufficiency in diabetic peripheral neuropathy. We identified NGFR100W as a mutation that enhances neuritogenic activity without pain sensitization and investigated its transcriptome to explore its ability to uncouple neuroprotective and nociceptive pathways. Combination therapy using lipid nanoparticles for codelivery of NGFR100W and VEGFA mRNA improved blood flow, increased microvessel formation, and preserved nerve function in a diabetic mouse model. This approach, which combines structure-based design and mRNA therapy, offers a novel strategy for decoupling protein functions and developing therapeutic molecules with specific functionalities.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"13 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0989","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic peripheral neuropathy (DPN) poses significant clinical challenges due to progressive nerve degeneration and vascular insufficiency. To address both neural and vascular complications simultaneously, we employed an mRNA-based protein replacement therapy. In this study, leveraging mRNA template design, structure-based screening identified NGFR100W as a variant dissociating neuroprotective and nociceptive functions, demonstrating enhanced neuritogenic activity without pain sensitization. Additionally, transcriptome analysis of NGF mutants versus wild type further reveals the potential mechanism by which NGFR100W uncouples neuroprotective and nociceptive pathways. We cotransfected chemically modified NGFR100W mRNA and vascular endothelial growth factor A (VEGFA) mRNA, and the conditioned media collected from this transfection promoted endothelial cell migration, tubulogenesis, and neurite outgrowth. In a diabetic mouse model, combination therapy with lipid nanoparticle codelivery of NGFR100W and VEGFA mRNA significantly improved blood flow in the plantar region and mitigated nerve function decline compared with monotherapy. Histological analysis showed increased microvessel formation and higher intraepidermal nerve fiber density in treated mice. Our findings highlight the therapeutic potential of NGFR100W and VEGFA mRNA coadministration for DPN, suggesting that protein supplementation via mRNA could offer a novel strategy for clinical intervention in some chronic medical conditions. ARTICLE HIGHLIGHTS We aimed to develop a dual-targeted mRNA-based therapy to address both neural degeneration and vascular insufficiency in diabetic peripheral neuropathy. We identified NGFR100W as a mutation that enhances neuritogenic activity without pain sensitization and investigated its transcriptome to explore its ability to uncouple neuroprotective and nociceptive pathways. Combination therapy using lipid nanoparticles for codelivery of NGFR100W and VEGFA mRNA improved blood flow, increased microvessel formation, and preserved nerve function in a diabetic mouse model. This approach, which combines structure-based design and mRNA therapy, offers a novel strategy for decoupling protein functions and developing therapeutic molecules with specific functionalities.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.