Vadim Briaud, Alexandros Karam, Niko Koivunen, Eemeli Tomberg, Hardi Veermäe and Vincent Vennin
{"title":"How deep is the dip and how tall are the wiggles in inflationary power spectra?","authors":"Vadim Briaud, Alexandros Karam, Niko Koivunen, Eemeli Tomberg, Hardi Veermäe and Vincent Vennin","doi":"10.1088/1475-7516/2025/05/097","DOIUrl":null,"url":null,"abstract":"We study linear scalar perturbations in single-field models of inflation featuring a non-attractor phase. These models lead to a peak in the curvature power spectrum that may result in the formation of primordial black holes. We develop a transfer-matrix formalism, analogous to the S-matrix program in quantum-field theory, that maps perturbations throughout the transitory phase. At scales smaller than the peak, the power spectrum features damped oscillations, and the duration of the transition sets the scale at which power-law damping switches to exponential damping. At scales larger than the peak, we demonstrate that a dip appears in the power spectrum if and only if the inflaton's velocity does not flip sign. We show that the amplitude at the dip always scales as the inverse square-rooted amplitude of the peak, and comment on the physical consequences of this universal relationship. We also test the robustness of our results with a few toy models and interpret them with an intuitive mechanical analogy.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"34 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/097","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study linear scalar perturbations in single-field models of inflation featuring a non-attractor phase. These models lead to a peak in the curvature power spectrum that may result in the formation of primordial black holes. We develop a transfer-matrix formalism, analogous to the S-matrix program in quantum-field theory, that maps perturbations throughout the transitory phase. At scales smaller than the peak, the power spectrum features damped oscillations, and the duration of the transition sets the scale at which power-law damping switches to exponential damping. At scales larger than the peak, we demonstrate that a dip appears in the power spectrum if and only if the inflaton's velocity does not flip sign. We show that the amplitude at the dip always scales as the inverse square-rooted amplitude of the peak, and comment on the physical consequences of this universal relationship. We also test the robustness of our results with a few toy models and interpret them with an intuitive mechanical analogy.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.