Karl L Sangwon, Eric A Grin, Bruck Negash, Daniel D Wiggan, Cathryn Lapierre, Eytan Raz, Maksim Shapiro, Ilya Laufer, Vera Sharashidze, Caleb Rutledge, Howard A Riina, Eric K Oermann, Erez Nossek
{"title":"Intraoperative Evaluation of Dural Arteriovenous Fistula Obliteration Using FLOW 800 Hemodynamic Analysis.","authors":"Karl L Sangwon, Eric A Grin, Bruck Negash, Daniel D Wiggan, Cathryn Lapierre, Eytan Raz, Maksim Shapiro, Ilya Laufer, Vera Sharashidze, Caleb Rutledge, Howard A Riina, Eric K Oermann, Erez Nossek","doi":"10.1227/ons.0000000000001646","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Dural arteriovenous fistula (dAVF) surgery is a microsurgical procedure that requires confirmation of obliteration using formal cerebral angiography, but the lack of intraoperative angiogram or need for postoperative angiogram in some settings necessitates a search for alternative, less invasive methods to verify surgical success. This study evaluates the use of indocyanine green videoangiography FLOW 800 hemodynamic intraoperatively during cranial and spinal dAVF obliteration to confirm obliteration and predict surgical success.</p><p><strong>Methods: </strong>A retrospective analysis was conducted using indocyanine green videoangiography FLOW 800 to intraoperatively measure 4 hemodynamic parameters-Delay Time, Speed, Time to Peak, and Rise Time-across venous drainage regions of interest pre/post-dAVF obliteration. Univariate and multivariate statistical analyses to evaluate and visualize presurgical vs postsurgical state hemodynamic changes included nonparametric statistical tests, logistic regression, and Bayesian analysis.</p><p><strong>Results: </strong>A total of 14 venous drainage regions of interest from 8 patients who had successful spinal or cranial dAVF obliteration confirmed with intraoperative digital subtraction angiography were extracted. Significant hemodynamic changes were observed after dAVF obliteration, with median Speed decreasing from 13.5 to 5.5 s-1 (P = .029) and Delay Time increasing from 2.07 to 7.86 s (P = .020). Bayesian logistic regression identified Delay Time as the strongest predictor of postsurgical state, with a 50% increase associated with 2.16 times higher odds of achieving obliteration (odds ratio = 4.59, 95% highest density interval: 1.07-19.95). Speed exhibited a trend toward a negative association with postsurgical state (odds ratio = 0.62, 95% highest density interval: 0.26-1.42). Receiver operating characteristic-area under the curve analysis using logistic regression demonstrated a score of 0.760, highlighting Delay Time and Speed as key features distinguishing preobliteration and postobliteration states.</p><p><strong>Conclusion: </strong>Our findings demonstrate that intraoperative FLOW 800 analysis reliably quantifies and visualizes immediate hemodynamic changes consistent with dAVF obliteration. Speed and Delay Time emerged as key indicators of surgical success, highlighting the potential of FLOW 800 as a noninvasive adjunct to traditional imaging techniques for confirming dAVF obliteration intraoperatively.</p>","PeriodicalId":520730,"journal":{"name":"Operative neurosurgery (Hagerstown, Md.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operative neurosurgery (Hagerstown, Md.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1227/ons.0000000000001646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: Dural arteriovenous fistula (dAVF) surgery is a microsurgical procedure that requires confirmation of obliteration using formal cerebral angiography, but the lack of intraoperative angiogram or need for postoperative angiogram in some settings necessitates a search for alternative, less invasive methods to verify surgical success. This study evaluates the use of indocyanine green videoangiography FLOW 800 hemodynamic intraoperatively during cranial and spinal dAVF obliteration to confirm obliteration and predict surgical success.
Methods: A retrospective analysis was conducted using indocyanine green videoangiography FLOW 800 to intraoperatively measure 4 hemodynamic parameters-Delay Time, Speed, Time to Peak, and Rise Time-across venous drainage regions of interest pre/post-dAVF obliteration. Univariate and multivariate statistical analyses to evaluate and visualize presurgical vs postsurgical state hemodynamic changes included nonparametric statistical tests, logistic regression, and Bayesian analysis.
Results: A total of 14 venous drainage regions of interest from 8 patients who had successful spinal or cranial dAVF obliteration confirmed with intraoperative digital subtraction angiography were extracted. Significant hemodynamic changes were observed after dAVF obliteration, with median Speed decreasing from 13.5 to 5.5 s-1 (P = .029) and Delay Time increasing from 2.07 to 7.86 s (P = .020). Bayesian logistic regression identified Delay Time as the strongest predictor of postsurgical state, with a 50% increase associated with 2.16 times higher odds of achieving obliteration (odds ratio = 4.59, 95% highest density interval: 1.07-19.95). Speed exhibited a trend toward a negative association with postsurgical state (odds ratio = 0.62, 95% highest density interval: 0.26-1.42). Receiver operating characteristic-area under the curve analysis using logistic regression demonstrated a score of 0.760, highlighting Delay Time and Speed as key features distinguishing preobliteration and postobliteration states.
Conclusion: Our findings demonstrate that intraoperative FLOW 800 analysis reliably quantifies and visualizes immediate hemodynamic changes consistent with dAVF obliteration. Speed and Delay Time emerged as key indicators of surgical success, highlighting the potential of FLOW 800 as a noninvasive adjunct to traditional imaging techniques for confirming dAVF obliteration intraoperatively.