High-Throughput Screening Identification of Chemical Compounds That Affect Cold-Regulated Gene Expression in Arabidopsis thaliana Using an Excised Single Leaf.
{"title":"High-Throughput Screening Identification of Chemical Compounds That Affect Cold-Regulated Gene Expression in <i>Arabidopsis thaliana</i> Using an Excised Single Leaf.","authors":"Kohei Kitawaki, Ryota Mihara, Yausko Ito-Inaba, Takehito Inaba","doi":"10.21769/BioProtoc.5319","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of chemical compounds that affect intracellular processes has greatly contributed to the understanding of developmental regulation in plants. In this protocol, we describe a method for identifying chemical compounds that affect cold-regulated gene expression in <i>Arabidopsis thaliana</i>. Specifically, we generated <i>Arabidopsis</i> plants harboring a COLD-REGULATED 15A <i>(COR15A)</i> promoter::luciferase (<i>COR15Apro::LUC</i>) construct and grew them in a submerged liquid culture. Using a single true leaf excised from <i>COR15Apro::LUC</i> plants and 96-well culture plates, we performed high-throughput screening of chemical compounds that inhibit cold-induction of <i>COR15Apro::LUC</i>. Luciferase activity was detected using a microplate reader and a chemiluminescence imaging device. This protocol can be easily used for the identification of chemical compounds that regulate other processes, being versatile with respect to equipment. Key features • High-throughput screening of chemical compounds that affect cold-regulated gene expression is possible using a single leaf excised from <i>Arabidopsis</i> grown in a submerged culture. • Screening is based on luciferase activity derived from an excised single leaf. • Direct measurement of luciferase activity is possible using a microplate reader and a chemiluminescence imaging device. • This protocol can be easily used for the identification of chemical compounds that regulate other processes.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 10","pages":"e5319"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of chemical compounds that affect intracellular processes has greatly contributed to the understanding of developmental regulation in plants. In this protocol, we describe a method for identifying chemical compounds that affect cold-regulated gene expression in Arabidopsis thaliana. Specifically, we generated Arabidopsis plants harboring a COLD-REGULATED 15A (COR15A) promoter::luciferase (COR15Apro::LUC) construct and grew them in a submerged liquid culture. Using a single true leaf excised from COR15Apro::LUC plants and 96-well culture plates, we performed high-throughput screening of chemical compounds that inhibit cold-induction of COR15Apro::LUC. Luciferase activity was detected using a microplate reader and a chemiluminescence imaging device. This protocol can be easily used for the identification of chemical compounds that regulate other processes, being versatile with respect to equipment. Key features • High-throughput screening of chemical compounds that affect cold-regulated gene expression is possible using a single leaf excised from Arabidopsis grown in a submerged culture. • Screening is based on luciferase activity derived from an excised single leaf. • Direct measurement of luciferase activity is possible using a microplate reader and a chemiluminescence imaging device. • This protocol can be easily used for the identification of chemical compounds that regulate other processes.