Closed-Loop Multistep Planning.

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Giulia Lafratta, Bernd Porr, Christopher Chandler, Alice Miller
{"title":"Closed-Loop Multistep Planning.","authors":"Giulia Lafratta, Bernd Porr, Christopher Chandler, Alice Miller","doi":"10.1162/neco_a_01761","DOIUrl":null,"url":null,"abstract":"<p><p>Living organisms interact with their surroundings in a closed-loop fashion, where sensory inputs dictate the initiation and termination of behaviors. Even simple animals are able to develop and execute complex plans, which has not yet been replicated in robotics using pure closed-loop input control. We propose a solution to this problem by defining a set of discrete and temporary closed-loop controllers, called \"Tasks,\" each representing a closed-loop behavior. We further introduce a supervisory module that has an innate understanding of physics and causality, through which it can simulate the execution of Task sequences over time and store the results in a model of the environment. On the basis of this model, plans can be made by chaining temporary closed-loop controllers. Our proposed framework was implemented for a robot and tested in two scenarios as proof of concept.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1288-1319"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01761","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Living organisms interact with their surroundings in a closed-loop fashion, where sensory inputs dictate the initiation and termination of behaviors. Even simple animals are able to develop and execute complex plans, which has not yet been replicated in robotics using pure closed-loop input control. We propose a solution to this problem by defining a set of discrete and temporary closed-loop controllers, called "Tasks," each representing a closed-loop behavior. We further introduce a supervisory module that has an innate understanding of physics and causality, through which it can simulate the execution of Task sequences over time and store the results in a model of the environment. On the basis of this model, plans can be made by chaining temporary closed-loop controllers. Our proposed framework was implemented for a robot and tested in two scenarios as proof of concept.

闭环多步骤规划。
生物体以闭环方式与周围环境相互作用,其中感官输入决定行为的开始和结束。即使是简单的动物也能够制定和执行复杂的计划,这在使用纯闭环输入控制的机器人中还没有被复制。我们提出了一种解决方案,通过定义一组离散和临时的闭环控制器,称为“任务”,每个任务代表一个闭环行为。我们进一步介绍了一个对物理和因果关系具有天生理解的监督模块,通过它可以模拟任务序列随时间的执行,并将结果存储在环境模型中。在此模型的基础上,可以通过串联临时闭环控制器来制定计划。我们提出的框架在机器人上实现,并在两个场景中进行了测试,作为概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信