TCRCluster: a novel approach to T-cell receptor latent featurization and clustering using contrastive learning-guided two-stage variational autoencoders.

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-05-27 eCollection Date: 2025-06-01 DOI:10.1093/nargab/lqaf065
Yat-Tsai Richie Wan, Morten Nielsen
{"title":"TCRCluster: a novel approach to T-cell receptor latent featurization and clustering using contrastive learning-guided two-stage variational autoencoders.","authors":"Yat-Tsai Richie Wan, Morten Nielsen","doi":"10.1093/nargab/lqaf065","DOIUrl":null,"url":null,"abstract":"<p><p>T cells play a vital role in adaptive immunity by targeting pathogen-infected or cancerous cells, but predicting their specificity remains challenging. Encoding T-cell receptor (TCR) sequences into informative feature spaces is therefore crucial for advancing specificity prediction and downstream applications. For this, we developed a variational autoencoder (VAE)-based model trained on paired TCR α-β chain data, incorporating all six complementarity-determining regions. A semi-supervised 'two-stage VAE' framework, integrating cosine triplet loss and a classifier, was found to further refine peptide-specific latent representations, outperforming sequence-based methods in specificity prediction. Clustering analyses leveraging our VAE latent space were evaluated using <i>K</i>-means, agglomerative clustering, and a novel graph-based method. Agglomerative clustering achieved the most biologically relevant results, balancing cluster purity and retention despite noise in TCR specificity annotations. We extended these insights to evaluate TCR repertoire data. Across datasets, VAE-based models outperformed sequence-based methods, particularly in retention metrics, with notable improvements in the SARS-CoV-2 repertoire dataset. Moreover, the cancer repertoire analysis highlighted the generalizability of our approach, where the model displayed high performance despite minimal similarity between the training and test data. Collectively, these results demonstrate the potential of VAE-based latent representations to offer a robust framework for prediction, clustering, and repertoire analysis.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 2","pages":"lqaf065"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

T cells play a vital role in adaptive immunity by targeting pathogen-infected or cancerous cells, but predicting their specificity remains challenging. Encoding T-cell receptor (TCR) sequences into informative feature spaces is therefore crucial for advancing specificity prediction and downstream applications. For this, we developed a variational autoencoder (VAE)-based model trained on paired TCR α-β chain data, incorporating all six complementarity-determining regions. A semi-supervised 'two-stage VAE' framework, integrating cosine triplet loss and a classifier, was found to further refine peptide-specific latent representations, outperforming sequence-based methods in specificity prediction. Clustering analyses leveraging our VAE latent space were evaluated using K-means, agglomerative clustering, and a novel graph-based method. Agglomerative clustering achieved the most biologically relevant results, balancing cluster purity and retention despite noise in TCR specificity annotations. We extended these insights to evaluate TCR repertoire data. Across datasets, VAE-based models outperformed sequence-based methods, particularly in retention metrics, with notable improvements in the SARS-CoV-2 repertoire dataset. Moreover, the cancer repertoire analysis highlighted the generalizability of our approach, where the model displayed high performance despite minimal similarity between the training and test data. Collectively, these results demonstrate the potential of VAE-based latent representations to offer a robust framework for prediction, clustering, and repertoire analysis.

TCRCluster:一种使用对比学习引导的两阶段变分自编码器的t细胞受体潜在特征和聚类的新方法。
T细胞通过靶向病原体感染或癌细胞在适应性免疫中发挥重要作用,但预测其特异性仍然具有挑战性。因此,将t细胞受体(TCR)序列编码为信息特征空间对于推进特异性预测和下游应用至关重要。为此,我们开发了一个基于变分自编码器(VAE)的模型,该模型训练成对的TCR α-β链数据,包含所有六个互补决定区域。一个半监督的“两阶段VAE”框架,整合了余弦三重态损失和分类器,进一步完善了肽特异性潜在表征,在特异性预测方面优于基于序列的方法。利用我们的VAE潜在空间的聚类分析使用K-means、聚集聚类和一种新的基于图的方法进行评估。聚集聚类获得了最具生物学相关性的结果,平衡了聚类纯度和保留性,尽管在TCR特异性注释中存在噪声。我们将这些见解扩展到评估TCR曲目数据。在所有数据集中,基于vae的模型优于基于序列的方法,特别是在保留指标方面,SARS-CoV-2曲目数据集有显着改善。此外,癌症库分析强调了我们方法的通用性,尽管训练数据和测试数据之间的相似性很小,但模型仍显示出高性能。总的来说,这些结果证明了基于vae的潜在表示的潜力,为预测、聚类和库分析提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信