Network-based analyses of multiomics data in biomedicine.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Rachit Kumar, Joseph D Romano, Marylyn D Ritchie
{"title":"Network-based analyses of multiomics data in biomedicine.","authors":"Rachit Kumar, Joseph D Romano, Marylyn D Ritchie","doi":"10.1186/s13040-025-00452-x","DOIUrl":null,"url":null,"abstract":"<p><p>Network representations of data are designed to encode relationships between concepts as sets of edges between nodes. Human biology is inherently complex and is represented by data that often exists in a hierarchical nature. One canonical example is the relationship that exists within and between various -omics datasets, including genomics, transcriptomics, and proteomics, among others. Encoding such data in a network-based or graph-based representation allows the explicit incorporation of such relationships into various biomedical big data tasks, including (but not limited to) disease subtyping, interaction prediction, biomarker identification, and patient classification. This review will present various existing approaches in using network representations and analysis of data in multiomics in the framework of deep learning and machine learning approaches, subdivided into supervised and unsupervised approaches, to identify benefits and drawbacks of various approaches as well as the possible next steps for the field.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"37"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00452-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Network representations of data are designed to encode relationships between concepts as sets of edges between nodes. Human biology is inherently complex and is represented by data that often exists in a hierarchical nature. One canonical example is the relationship that exists within and between various -omics datasets, including genomics, transcriptomics, and proteomics, among others. Encoding such data in a network-based or graph-based representation allows the explicit incorporation of such relationships into various biomedical big data tasks, including (but not limited to) disease subtyping, interaction prediction, biomarker identification, and patient classification. This review will present various existing approaches in using network representations and analysis of data in multiomics in the framework of deep learning and machine learning approaches, subdivided into supervised and unsupervised approaches, to identify benefits and drawbacks of various approaches as well as the possible next steps for the field.

基于网络的生物医学多组学数据分析。
数据的网络表示被设计为将概念之间的关系编码为节点之间的边集。人类生物学本质上是复杂的,并由数据表示,这些数据通常存在于层次结构中。一个典型的例子是存在于各种组学数据集内部和之间的关系,包括基因组学、转录组学和蛋白质组学等。在基于网络或基于图的表示中对这些数据进行编码,可以将这些关系明确地合并到各种生物医学大数据任务中,包括(但不限于)疾病亚型、相互作用预测、生物标志物识别和患者分类。本综述将介绍在深度学习和机器学习方法框架下使用网络表示和多组学数据分析的各种现有方法,细分为监督和无监督方法,以确定各种方法的优缺点以及该领域可能的下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信