Paul Considine, Panida Punnabhum, Callum G Davidson, Georgina B Armstrong, Michaela Kreiner, Heather J Bax, Jitesh Chauhan, James Spicer, Debra H Josephs, Sophia N Karagiannis, Gavin Halbert, Zahra Rattray
{"title":"Assessment of biophysical properties of the first-in-class anti-cancer IgE antibody drug MOv18 IgE demonstrates monomeric purity and stability.","authors":"Paul Considine, Panida Punnabhum, Callum G Davidson, Georgina B Armstrong, Michaela Kreiner, Heather J Bax, Jitesh Chauhan, James Spicer, Debra H Josephs, Sophia N Karagiannis, Gavin Halbert, Zahra Rattray","doi":"10.1080/19420862.2025.2512211","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic monoclonal antibodies, which are almost exclusively IgG isotypes, show significant promise but are prone to poor solution stability, including aggregation and elevated solution viscosity at dose-relevant concentrations. Recombinant IgE antibodies are emerging cancer immunotherapies. The first-in-class MOv18 IgE, recognizing the cancer-associated antigen folate receptor-alpha (FRα), completed a Phase 1 clinical trial in patients with solid tumors, showing early signs of efficacy at a low dose. The inaugural process development and scaled manufacture of MOv18 IgE for clinical testing were undertaken with little baseline knowledge about the solution phase behavior of recombinant IgE at dose-relevant concentrations. We evaluated MOv18 IgE physical stability in response to environmental and formulation stresses encountered throughout shelf life. We analyzed changes in physical stability using multiple orthogonal analytical techniques, including particle tracking analysis, size exclusion chromatography, and multidetector flow field flow fractionation hyphenated with UV. We used dynamic and multiangle light scattering to profile aggregation status. Formulation at pH 6.5, selected for use in the Phase 1 trial, resulted in high monomeric purity and no submicron proteinaceous particulates. Formulation at pH 5.5 and 7.5 induced significant submicron and sub-visible particle formation. IgE formulation was resistant to aggregation in response to freeze-thaw stress, retaining high monomeric purity. Exposure to thermal stress at elevated temperatures resulted in loss of monomeric purity and aggregation. Agitation stress-induced submicron and subvisible aggregation, but monomeric purity was not significantly affected. MOv18 IgE retains monomeric purity in response to formulation and stress conditions, confirming stability. Our results offer crucial guidance for future IgE-based drug development.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2512211"},"PeriodicalIF":7.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2512211","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic monoclonal antibodies, which are almost exclusively IgG isotypes, show significant promise but are prone to poor solution stability, including aggregation and elevated solution viscosity at dose-relevant concentrations. Recombinant IgE antibodies are emerging cancer immunotherapies. The first-in-class MOv18 IgE, recognizing the cancer-associated antigen folate receptor-alpha (FRα), completed a Phase 1 clinical trial in patients with solid tumors, showing early signs of efficacy at a low dose. The inaugural process development and scaled manufacture of MOv18 IgE for clinical testing were undertaken with little baseline knowledge about the solution phase behavior of recombinant IgE at dose-relevant concentrations. We evaluated MOv18 IgE physical stability in response to environmental and formulation stresses encountered throughout shelf life. We analyzed changes in physical stability using multiple orthogonal analytical techniques, including particle tracking analysis, size exclusion chromatography, and multidetector flow field flow fractionation hyphenated with UV. We used dynamic and multiangle light scattering to profile aggregation status. Formulation at pH 6.5, selected for use in the Phase 1 trial, resulted in high monomeric purity and no submicron proteinaceous particulates. Formulation at pH 5.5 and 7.5 induced significant submicron and sub-visible particle formation. IgE formulation was resistant to aggregation in response to freeze-thaw stress, retaining high monomeric purity. Exposure to thermal stress at elevated temperatures resulted in loss of monomeric purity and aggregation. Agitation stress-induced submicron and subvisible aggregation, but monomeric purity was not significantly affected. MOv18 IgE retains monomeric purity in response to formulation and stress conditions, confirming stability. Our results offer crucial guidance for future IgE-based drug development.
期刊介绍:
mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.