Muscle Recruitment and Asymmetry in Bilateral Shoulder Injury Prevention Exercises: A Cross-Sectional Comparison Between Tennis Players and Non-Tennis Players.
{"title":"Muscle Recruitment and Asymmetry in Bilateral Shoulder Injury Prevention Exercises: A Cross-Sectional Comparison Between Tennis Players and Non-Tennis Players.","authors":"Maite Terré, Mònica Solana-Tramunt","doi":"10.3390/healthcare13101153","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Shoulder injuries are common in overhead sports like tennis due to repetitive unilateral movements that can lead to muscle imbalances. This study aimed to compare muscle recruitment and asymmetry during bilateral shoulder injury prevention exercises (performed with both arms simultaneously) in tennis players versus non-tennis athletes. <b>Methods:</b> Thirty-nine athletes (sixteen tennis players, twenty-three non-tennis athletes) performed two bilateral scapular retraction exercises at 45° and 90° shoulder abduction. Surface electromyography (sEMG) recorded the activation of the middle and lower trapezius. Root Mean Square (RMS), peak RMS and muscle symmetry indices were analyzed. <b>Results:</b> Tennis players showed significantly lower trapezius activation, especially during prone retraction at 90°. Muscle symmetry was slightly higher in tennis players at 90°, but asymmetry increased at 45°, suggesting angle-specific adaptations. <b>Conclusions:</b> Repetitive asymmetric loading in tennis may reduce the activation of scapular stabilizers and contribute to muscular imbalances. Including targeted bilateral exercises in training may help improve scapular muscle function and reduce injury risk in overhead athletes.</p>","PeriodicalId":12977,"journal":{"name":"Healthcare","volume":"13 10","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/healthcare13101153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Shoulder injuries are common in overhead sports like tennis due to repetitive unilateral movements that can lead to muscle imbalances. This study aimed to compare muscle recruitment and asymmetry during bilateral shoulder injury prevention exercises (performed with both arms simultaneously) in tennis players versus non-tennis athletes. Methods: Thirty-nine athletes (sixteen tennis players, twenty-three non-tennis athletes) performed two bilateral scapular retraction exercises at 45° and 90° shoulder abduction. Surface electromyography (sEMG) recorded the activation of the middle and lower trapezius. Root Mean Square (RMS), peak RMS and muscle symmetry indices were analyzed. Results: Tennis players showed significantly lower trapezius activation, especially during prone retraction at 90°. Muscle symmetry was slightly higher in tennis players at 90°, but asymmetry increased at 45°, suggesting angle-specific adaptations. Conclusions: Repetitive asymmetric loading in tennis may reduce the activation of scapular stabilizers and contribute to muscular imbalances. Including targeted bilateral exercises in training may help improve scapular muscle function and reduce injury risk in overhead athletes.
期刊介绍:
Healthcare (ISSN 2227-9032) is an international, peer-reviewed, open access journal (free for readers), which publishes original theoretical and empirical work in the interdisciplinary area of all aspects of medicine and health care research. Healthcare publishes Original Research Articles, Reviews, Case Reports, Research Notes and Short Communications. We encourage researchers to publish their experimental and theoretical results in as much detail as possible. For theoretical papers, full details of proofs must be provided so that the results can be checked; for experimental papers, full experimental details must be provided so that the results can be reproduced. Additionally, electronic files or software regarding the full details of the calculations, experimental procedure, etc., can be deposited along with the publication as “Supplementary Material”.