Lun Wei, Le Bo, Wangtao Jiang, Ruofan Qi, Chao Luo, Fei Qian, Panjie Ma, Jianping Qiu, Caiping Mao
{"title":"Single cell RNA sequencing reveals the role of local renin-angiotensin system in regulating ovarian physiological cycle and promoting PCOS.","authors":"Lun Wei, Le Bo, Wangtao Jiang, Ruofan Qi, Chao Luo, Fei Qian, Panjie Ma, Jianping Qiu, Caiping Mao","doi":"10.1038/s41420-025-02531-8","DOIUrl":null,"url":null,"abstract":"<p><p>There is a local renin-angiotensin system (RAS) in the ovary, which is involved in regulating many important physiological processes, but the specific mechanism remains unclear. Polycystic ovarian syndrome (PCOS) is the most frequently reported non-iatrogenic condition with abnormal RAS expression, characterized by overweight or obesity and insulin resistance (IR), both of which are significantly correlated with many long-term complications. These conditions are closely linked to circulatory or local RAS, serving as potential common regulatory nodes. The present study analyzed single-cell RNA sequencing (scRNA-seq) data from mouse ovaries during the reproductive period to obtain the expression levels and location information of RAS components in all cell clusters. It further analyzed the cyclical fluctuations of RAS and the differential gene sets during the estrous cycle. Protein-protein interaction analysis predicted the most closely interacting pathway with RAS, and preliminary evidence of crosstalk between angiotensin II (AngII) and the insulin signaling pathway was identified in the scRNA-seq data. A PCOS mouse model was constructed, replicating clinical reproductive and metabolic complications, and the crosstalk between AngII and IRS1/PI3K/AKT was verified. In conclusion, this study revealed the dynamic changes of the ovarian local RAS at the cellular level during the estrous cycle, and described the role of RAS in regulating ovarian function from a single-cell perspective. It also provided evidence that IR, caused by the crosstalk between AngII and IRS1/PI3K/AKT pathways, may be a potential underlying mechanism of PCOS.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"255"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116893/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02531-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a local renin-angiotensin system (RAS) in the ovary, which is involved in regulating many important physiological processes, but the specific mechanism remains unclear. Polycystic ovarian syndrome (PCOS) is the most frequently reported non-iatrogenic condition with abnormal RAS expression, characterized by overweight or obesity and insulin resistance (IR), both of which are significantly correlated with many long-term complications. These conditions are closely linked to circulatory or local RAS, serving as potential common regulatory nodes. The present study analyzed single-cell RNA sequencing (scRNA-seq) data from mouse ovaries during the reproductive period to obtain the expression levels and location information of RAS components in all cell clusters. It further analyzed the cyclical fluctuations of RAS and the differential gene sets during the estrous cycle. Protein-protein interaction analysis predicted the most closely interacting pathway with RAS, and preliminary evidence of crosstalk between angiotensin II (AngII) and the insulin signaling pathway was identified in the scRNA-seq data. A PCOS mouse model was constructed, replicating clinical reproductive and metabolic complications, and the crosstalk between AngII and IRS1/PI3K/AKT was verified. In conclusion, this study revealed the dynamic changes of the ovarian local RAS at the cellular level during the estrous cycle, and described the role of RAS in regulating ovarian function from a single-cell perspective. It also provided evidence that IR, caused by the crosstalk between AngII and IRS1/PI3K/AKT pathways, may be a potential underlying mechanism of PCOS.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.