Sze-Min Chan, Chris Tsai, Tai-Ping Lee, Zih-Rou Huang, Wei-Hsiang Huang, Chung-Tien Lin
{"title":"Therapeutic Potential of Umbilical Cord MSC-Derived Exosomes in a Severe Dry Eye Rat Model: Enhancing Corneal Protection and Modulating Inflammation.","authors":"Sze-Min Chan, Chris Tsai, Tai-Ping Lee, Zih-Rou Huang, Wei-Hsiang Huang, Chung-Tien Lin","doi":"10.3390/biomedicines13051174","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Dry eye disease (DED) is a multifactorial inflammatory disease that disrupts the ocular surface, causing tear film instability, epithelial damage, and chronic inflammation. Mesenchymal stem cell-derived exosomes (MSC-exos) are promising therapeutics with immunomodulatory and regenerative properties. This study investigates the therapeutic effects of umbilical cord MSC-derived exosomes (UCMSC-exos) in a severe dry eye model, induced by a surgical resection of the infra-orbital (ILG) and extra-orbital lacrimal gland (ELG) in rats. <b>Methods</b>: Clinical evaluations, including tear volume measurement, slit lamp biomicroscopy, fluorescein staining, and spectral domain optical coherence tomography (SD-OCT), were performed to assess corneal neovascularization, corneal abrasion, and epithelial/stromal thickness. Histopathological analysis, immunohistochemistry, and mRNA gene expression were conducted to evaluate corneal tissue changes and inflammatory marker expression. <b>Results</b>: The results show that the treatment group exhibited significantly reduced corneal neovascularization compared to the control group (<i>p</i> = 0.030). During the first month, the Exo group also had a significantly lower corneal fluorescein staining area (<i>p</i> = 0.032), suggesting accelerated wound healing. SD-OCT analysis revealed that the corneal epithelial thickness in the treatment group was closer to normal levels compared to the control group (<i>p</i> = 0.02 and <i>p</i> = 0.006, respectively). UCMSC-exos treatment also modulated the expression of α-SMA and apoptosis in the cornea. Additionally, the gene expression of inflammatory cytokines (IL-1β and TNF-α) were downregulated. <b>Conclusions</b>: These findings suggest that MSC-exosome therapy offers a novel, cell-free regenerative approach for managing severe DED, modulating inflammatory response.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13051174","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Dry eye disease (DED) is a multifactorial inflammatory disease that disrupts the ocular surface, causing tear film instability, epithelial damage, and chronic inflammation. Mesenchymal stem cell-derived exosomes (MSC-exos) are promising therapeutics with immunomodulatory and regenerative properties. This study investigates the therapeutic effects of umbilical cord MSC-derived exosomes (UCMSC-exos) in a severe dry eye model, induced by a surgical resection of the infra-orbital (ILG) and extra-orbital lacrimal gland (ELG) in rats. Methods: Clinical evaluations, including tear volume measurement, slit lamp biomicroscopy, fluorescein staining, and spectral domain optical coherence tomography (SD-OCT), were performed to assess corneal neovascularization, corneal abrasion, and epithelial/stromal thickness. Histopathological analysis, immunohistochemistry, and mRNA gene expression were conducted to evaluate corneal tissue changes and inflammatory marker expression. Results: The results show that the treatment group exhibited significantly reduced corneal neovascularization compared to the control group (p = 0.030). During the first month, the Exo group also had a significantly lower corneal fluorescein staining area (p = 0.032), suggesting accelerated wound healing. SD-OCT analysis revealed that the corneal epithelial thickness in the treatment group was closer to normal levels compared to the control group (p = 0.02 and p = 0.006, respectively). UCMSC-exos treatment also modulated the expression of α-SMA and apoptosis in the cornea. Additionally, the gene expression of inflammatory cytokines (IL-1β and TNF-α) were downregulated. Conclusions: These findings suggest that MSC-exosome therapy offers a novel, cell-free regenerative approach for managing severe DED, modulating inflammatory response.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.