Spatiotemporal calcium signaling patterns underlying opposing effects of histamine and TAS2R agonists in airway smooth muscle.

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Stanley Conaway, Joshua Richard, Deepak A Deshpande
{"title":"Spatiotemporal calcium signaling patterns underlying opposing effects of histamine and TAS2R agonists in airway smooth muscle.","authors":"Stanley Conaway, Joshua Richard, Deepak A Deshpande","doi":"10.1152/ajplung.00058.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular calcium (Ca<sup>2+</sup>) release via phospholipase C (PLC) following G-protein-coupled receptor (GPCR) activation is typically linked to membrane depolarization and airway smooth muscle (ASM) contraction. However, recent findings show that bitter taste receptor agonists, such as chloroquine (CQ), induce a paradoxical and potent relaxation response despite activating the Ca<sup>2+</sup> signaling pathway. This relaxation has been hypothesized to be driven by a distinct compartmentalization of calcium ions toward the cellular periphery, subsequently leading to membrane hyperpolarization, in contrast to the contractile effects of histamine. In this study, we further investigate the spatiotemporal dynamics of Ca<sup>2+</sup> signaling in ASM cells using single-cell microscopy and deep learning-based segmentation, integrating the results into a comprehensive model of ASM ion channel dynamics to compare the effects of histamine, CQ, and flufenamic acid (FFA). Our results show that histamine induces a strong, synchronized calcium release, nearly twice as high as that of CQ, which produces a sustained but lower-magnitude response. Per-cell analysis reveals more variable and asynchronous Ca<sup>2+</sup> signaling for CQ and FFA, with higher entropy compared with histamine. Integrating these findings into an ASM ion channel model, we observed that histamine-mediated Ca<sup>2+</sup> release activates voltage-gated Ca<sup>2+</sup> and Na<sup>+</sup> channels (leading to depolarization). In contrast, CQ preferentially engages BKCa, SKCa, and chloride channels (promoting hyperpolarization). These findings provide insights into the unique mechanisms by which bitter taste receptor agonists can modulate ASM tone, offering potential therapeutic strategies for relaxing ASM and alleviating airway hyperresponsiveness in conditions such as asthma.<b>NEW & NOTEWORTHY</b> Using machine-learning methods, these studies identify spatiotemporal differences in calcium responses between agonists of Gq-coupled receptors and bitter taste receptors in airway smooth muscle cells. The findings provide deeper insights into the mechanism of action of bitter tastant-induced airway smooth muscle relaxation.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L70-L83"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188627/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00058.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular calcium (Ca2+) release via phospholipase C (PLC) following G-protein-coupled receptor (GPCR) activation is typically linked to membrane depolarization and airway smooth muscle (ASM) contraction. However, recent findings show that bitter taste receptor agonists, such as chloroquine (CQ), induce a paradoxical and potent relaxation response despite activating the Ca2+ signaling pathway. This relaxation has been hypothesized to be driven by a distinct compartmentalization of calcium ions toward the cellular periphery, subsequently leading to membrane hyperpolarization, in contrast to the contractile effects of histamine. In this study, we further investigate the spatiotemporal dynamics of Ca2+ signaling in ASM cells using single-cell microscopy and deep learning-based segmentation, integrating the results into a comprehensive model of ASM ion channel dynamics to compare the effects of histamine, CQ, and flufenamic acid (FFA). Our results show that histamine induces a strong, synchronized calcium release, nearly twice as high as that of CQ, which produces a sustained but lower-magnitude response. Per-cell analysis reveals more variable and asynchronous Ca2+ signaling for CQ and FFA, with higher entropy compared with histamine. Integrating these findings into an ASM ion channel model, we observed that histamine-mediated Ca2+ release activates voltage-gated Ca2+ and Na+ channels (leading to depolarization). In contrast, CQ preferentially engages BKCa, SKCa, and chloride channels (promoting hyperpolarization). These findings provide insights into the unique mechanisms by which bitter taste receptor agonists can modulate ASM tone, offering potential therapeutic strategies for relaxing ASM and alleviating airway hyperresponsiveness in conditions such as asthma.NEW & NOTEWORTHY Using machine-learning methods, these studies identify spatiotemporal differences in calcium responses between agonists of Gq-coupled receptors and bitter taste receptors in airway smooth muscle cells. The findings provide deeper insights into the mechanism of action of bitter tastant-induced airway smooth muscle relaxation.

组胺和TAS2R激动剂在气道平滑肌中拮抗作用的时空钙信号模式。
g蛋白偶联受体(GPCR)激活后,通过磷脂酶C (PLC)释放细胞内钙(Ca2+)通常与膜去极化和气道平滑肌(ASM)收缩有关。然而,最近的研究结果表明,苦味受体激动剂,如氯喹(CQ),诱导一个矛盾的和有效的放松反应,尽管激活Ca2+信号通路。这种松弛被假设是由钙离子向细胞周围的明显区隔化驱动的,随后导致膜超极化,与组胺的收缩作用相反。在这项研究中,我们使用单细胞显微镜和基于深度学习的分割技术进一步研究了ASM细胞中Ca2+信号的时空动态,并将结果整合到ASM离子通道动力学的综合模型中,以比较组胺、CQ和氟芬那酸(FFA)的影响。我们的研究结果表明,组胺诱导了强烈的、同步的钙释放,几乎是CQ的两倍,后者产生了持续但强度较低的反应。每细胞分析显示更多的可变和异步Ca2+信号CQ和FFA,与组胺相比具有更高的熵。将这些发现整合到ASM离子通道模型中,我们观察到组胺介导的Ca2+释放激活电压门控Ca2+和Na+通道(导致去极化)。相反,CQ优先参与BKCa、SKCa和氯离子通道(促进超极化)。这些发现为苦味受体激动剂调节ASM音调的独特机制提供了见解,为放松ASM和减轻哮喘等疾病的气道高反应性提供了潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信