Extraordinary strength-ductility synergy in superalloy joints via a high-entropy-alloy modified multi-interlayer composite bonding strategy

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Yuan , Y.Z. Yang , J. Gan , T.H. Chou , Y.M. Zhao , D. Hao , J.Y. Zhang , J.L. Li , J.T. Xiong , T. Yang
{"title":"Extraordinary strength-ductility synergy in superalloy joints via a high-entropy-alloy modified multi-interlayer composite bonding strategy","authors":"L. Yuan ,&nbsp;Y.Z. Yang ,&nbsp;J. Gan ,&nbsp;T.H. Chou ,&nbsp;Y.M. Zhao ,&nbsp;D. Hao ,&nbsp;J.Y. Zhang ,&nbsp;J.L. Li ,&nbsp;J.T. Xiong ,&nbsp;T. Yang","doi":"10.1016/j.actamat.2025.121186","DOIUrl":null,"url":null,"abstract":"<div><div>Diffusion bonding with innovative interlayers is critical for manufacturing high-precision aerospace turbine components requiring exceptional comprehensive performances, yet achieving simultaneous strength and ductility in superalloy bonding joints remains challenging. Developing high-performance interlayer material, introducing effective strengthening strategies, and elucidating deformation mechanisms in the superalloy joints can address this issue. This study introduces a multi-interlayer composite bonding technique using a “BNi2/high entropy alloy/BNi2” sandwich structured interlayer to join powder metallurgy superalloy FGH98. The liquid BNi2 interlayer eliminated interfacial defects, reducing the risk of a brittle fracture at the interface. The high entropy alloy interlayer of FeCoNiTiAl promoted atomic diffusion between the interlayer and base metals, facilitating the in situ formation of TiB<sub>2</sub> borides, M<sub>3</sub>B<sub>2</sub> borides, γ' nanoparticles and comprising distinct zones with different deformation capabilities. This heterogeneous joint microstructure resulted in an extraordinary strength-ductility synergy through strain partitioning and load transfer. Among these zones, the strengthening effect in the Ti-boride zone (TBZ) with in situ TiB<sub>2</sub> borides was crucial, particularly at elevated temperatures. High work-hardening and deformation capabilities were attributed to TiB<sub>2</sub>’s effectiveness in obstructing dislocation movement and generating stacking faults within the borides. As a result, an ultrahigh ultimate tensile strength of 1410 ± 10 MPa, a total elongation at fracture of 19 ± 0.5 % at room temperature, and a maximum tensile strength of 981 ± 20 MPa at 800 °C were achieved in the bonding joint.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"295 ","pages":"Article 121186"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425004707","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion bonding with innovative interlayers is critical for manufacturing high-precision aerospace turbine components requiring exceptional comprehensive performances, yet achieving simultaneous strength and ductility in superalloy bonding joints remains challenging. Developing high-performance interlayer material, introducing effective strengthening strategies, and elucidating deformation mechanisms in the superalloy joints can address this issue. This study introduces a multi-interlayer composite bonding technique using a “BNi2/high entropy alloy/BNi2” sandwich structured interlayer to join powder metallurgy superalloy FGH98. The liquid BNi2 interlayer eliminated interfacial defects, reducing the risk of a brittle fracture at the interface. The high entropy alloy interlayer of FeCoNiTiAl promoted atomic diffusion between the interlayer and base metals, facilitating the in situ formation of TiB2 borides, M3B2 borides, γ' nanoparticles and comprising distinct zones with different deformation capabilities. This heterogeneous joint microstructure resulted in an extraordinary strength-ductility synergy through strain partitioning and load transfer. Among these zones, the strengthening effect in the Ti-boride zone (TBZ) with in situ TiB2 borides was crucial, particularly at elevated temperatures. High work-hardening and deformation capabilities were attributed to TiB2’s effectiveness in obstructing dislocation movement and generating stacking faults within the borides. As a result, an ultrahigh ultimate tensile strength of 1410 ± 10 MPa, a total elongation at fracture of 19 ± 0.5 % at room temperature, and a maximum tensile strength of 981 ± 20 MPa at 800 °C were achieved in the bonding joint.

Abstract Image

高熵合金改性多层复合材料键合策略在高温合金接头中的超强强度-延性协同效应
具有创新中间层的扩散连接对于制造需要卓越综合性能的高精度航空涡轮部件至关重要,但在高温合金连接接头中实现同时强度和延展性仍然具有挑战性。开发高性能的层间材料,引入有效的强化策略,阐明高温合金接头的变形机制可以解决这一问题。本研究介绍了一种采用“BNi2/高熵合金/BNi2”夹层结构夹层与粉末冶金高温合金FGH98结合的多层复合连接技术。液态BNi2夹层消除了界面缺陷,降低了界面脆性断裂的风险。FeCoNiTiAl的高熵合金中间层促进了中间层与基体金属之间的原子扩散,促进了TiB2硼化物、M3B2硼化物和γ′纳米颗粒的原位形成,并形成了具有不同变形能力的不同区域。这种非均匀节理微观结构通过应变分配和荷载传递产生了非凡的强度-延性协同效应。在这些区域中,原位TiB2硼化物在ti -硼化物区(TBZ)的强化作用至关重要,特别是在高温下。高加工硬化和变形能力归因于TiB2有效地阻碍位错运动和在硼化物中产生层错。结果表明,复合材料的室温极限抗拉强度为1410±10 MPa,断裂伸长率为19±0.5%,800℃时的最大抗拉强度为981±20 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信