A disordered linker in the Polycomb protein Polyhomeotic tunes phase separation and oligomerization

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tim M. Gemeinhardt, Roshan M. Regy, Tien M. Phan, Nanu Pal, Jyoti Sharma, Olga Senkovich, Andrea J. Mendiola, Heather J. Ledterman, Amy Henrickson, Daniel Lopes, Utkarsh Kapoor, Ashish Bihani, Djamouna Sihou, Young C. Kim, David Jeruzalmi, Borries Demeler, Chongwoo A. Kim, Jeetain Mittal, Nicole J. Francis
{"title":"A disordered linker in the Polycomb protein Polyhomeotic tunes phase separation and oligomerization","authors":"Tim M. Gemeinhardt, Roshan M. Regy, Tien M. Phan, Nanu Pal, Jyoti Sharma, Olga Senkovich, Andrea J. Mendiola, Heather J. Ledterman, Amy Henrickson, Daniel Lopes, Utkarsh Kapoor, Ashish Bihani, Djamouna Sihou, Young C. Kim, David Jeruzalmi, Borries Demeler, Chongwoo A. Kim, Jeetain Mittal, Nicole J. Francis","doi":"10.1016/j.molcel.2025.05.008","DOIUrl":null,"url":null,"abstract":"Biomolecular condensates are increasingly recognized as key regulators of chromatin organization, yet how their formation and properties arise from protein sequences remains incompletely understood. Cross-species comparisons can reveal both conserved functions and significant evolutionary differences. Here, we integrate <em>in vitro</em> reconstitution, molecular dynamics simulations, and cell-based assays to examine how <em>Drosophila</em> and human variants of Polyhomeotic (Ph)—a subunit of the PRC1 chromatin regulatory complex—drive condensate formation through their sterile alpha motif (SAM) oligomerization domains. We identify divergent interactions between SAM and the disordered linker connecting it to the rest of Ph. These interactions enhance oligomerization and modulate both the formation and properties of reconstituted condensates. Oligomerization influences condensate dynamics but minimally impacts condensate formation. Linker-SAM interactions also affect condensate formation in <em>Drosophila</em> and human cells and growth in <em>Drosophila</em> imaginal discs. Our findings show how evolutionary changes in disordered linkers can fine-tune condensate properties, providing insights into sequence-function relationships.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"84 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.05.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomolecular condensates are increasingly recognized as key regulators of chromatin organization, yet how their formation and properties arise from protein sequences remains incompletely understood. Cross-species comparisons can reveal both conserved functions and significant evolutionary differences. Here, we integrate in vitro reconstitution, molecular dynamics simulations, and cell-based assays to examine how Drosophila and human variants of Polyhomeotic (Ph)—a subunit of the PRC1 chromatin regulatory complex—drive condensate formation through their sterile alpha motif (SAM) oligomerization domains. We identify divergent interactions between SAM and the disordered linker connecting it to the rest of Ph. These interactions enhance oligomerization and modulate both the formation and properties of reconstituted condensates. Oligomerization influences condensate dynamics but minimally impacts condensate formation. Linker-SAM interactions also affect condensate formation in Drosophila and human cells and growth in Drosophila imaginal discs. Our findings show how evolutionary changes in disordered linkers can fine-tune condensate properties, providing insights into sequence-function relationships.

Abstract Image

多梳蛋白中一个无序的连接体多同质性调节相分离和寡聚化
生物分子凝聚体越来越被认为是染色质组织的关键调节因子,但它们是如何从蛋白质序列中形成和产生特性的,仍然不完全清楚。跨物种比较可以揭示保守的功能和显著的进化差异。在这里,我们整合了体外重构、分子动力学模拟和基于细胞的分析,以研究果蝇和人类多同源性(Ph)变体(PRC1染色质调控复合体的亚基)如何通过其无菌α基序(SAM)寡聚化结构域驱动凝聚形成。我们确定了SAM和连接其与其余ph的无序连接之间的不同相互作用。这些相互作用增强了寡聚化并调节了重构凝聚物的形成和性质。低聚反应影响凝析油动力学,但对凝析油形成的影响最小。Linker-SAM相互作用也影响果蝇和人类细胞的凝结物形成以及果蝇想象盘的生长。我们的研究结果显示了无序连接子的进化变化如何微调凝聚特性,为序列-函数关系提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信