Angel Mulero, Ariel Hernández, Virginia Vadillo-Rodríguez, Isidro Cachadiña
{"title":"Correlations of surface tension for mixtures of n-alkanes as a function of the composition: applicability and performance analysis of existing models.","authors":"Angel Mulero, Ariel Hernández, Virginia Vadillo-Rodríguez, Isidro Cachadiña","doi":"10.1039/d5cp01354b","DOIUrl":null,"url":null,"abstract":"In this work, a large data set of experimental values of surface tension for binary mixtures of two n-alkanes have been compiled. These values are later fitted to different models of correlation as functions of molar fraction at various temperatures. All of these models use the surface tension of pure fluids as input data and may require between one and three adjustable coefficients. For some mixtures and/or temperatures, where the surface tension values of pure fluids have not been measured, predictions from previously proposed specific correlations for pure fluids are considered as an alternative. Different cases are studied accordingly with the availability of surface tension values for pure fluids: (i) available for both pure fluids, (ii) available for only one of the fluids, and (iii) unavailable for both fluids. Moreover, a fourth case is considered to include those mixtures and temperatures at which one of the fluids is supercritical. The applicability and accuracy of 10 different analytical correlation models are evaluated based on the percentage deviations between experimental and calculated values. Additionally, the Akaike Information Criterion is applied to identify the most suitable models. As a main result, it is found that predicted values from correlations for pure fluids can be used instead of experimental data without significantly affecting the accuracy and applicability of the models. Moreover, it is shown that the Winterfeld-Scriven-Davis model, which has a certain physicochemical basis and only one adjustable coefficient, provides the best overall results. However, this model cannot be applied when one of the fluids is supercritical and its surface tension is assumed to be zero. In this case, the Redlich-Kister correlation, with two or three adjustable coefficients, provides better results. More recent or more complex models are not necessary to achieve excellent accuracy for n-alkane mixtures and therefore should be avoided.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"57 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp01354b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a large data set of experimental values of surface tension for binary mixtures of two n-alkanes have been compiled. These values are later fitted to different models of correlation as functions of molar fraction at various temperatures. All of these models use the surface tension of pure fluids as input data and may require between one and three adjustable coefficients. For some mixtures and/or temperatures, where the surface tension values of pure fluids have not been measured, predictions from previously proposed specific correlations for pure fluids are considered as an alternative. Different cases are studied accordingly with the availability of surface tension values for pure fluids: (i) available for both pure fluids, (ii) available for only one of the fluids, and (iii) unavailable for both fluids. Moreover, a fourth case is considered to include those mixtures and temperatures at which one of the fluids is supercritical. The applicability and accuracy of 10 different analytical correlation models are evaluated based on the percentage deviations between experimental and calculated values. Additionally, the Akaike Information Criterion is applied to identify the most suitable models. As a main result, it is found that predicted values from correlations for pure fluids can be used instead of experimental data without significantly affecting the accuracy and applicability of the models. Moreover, it is shown that the Winterfeld-Scriven-Davis model, which has a certain physicochemical basis and only one adjustable coefficient, provides the best overall results. However, this model cannot be applied when one of the fluids is supercritical and its surface tension is assumed to be zero. In this case, the Redlich-Kister correlation, with two or three adjustable coefficients, provides better results. More recent or more complex models are not necessary to achieve excellent accuracy for n-alkane mixtures and therefore should be avoided.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.