Machine learning-assisted design of the molecular structure of p-phenylenediamine antioxidants

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Zongya Wu, Shuai Sun, Chaokun Huang, Li Zhou, Yanlong Luo, Xiujuan Wang
{"title":"Machine learning-assisted design of the molecular structure of p-phenylenediamine antioxidants","authors":"Zongya Wu, Shuai Sun, Chaokun Huang, Li Zhou, Yanlong Luo, Xiujuan Wang","doi":"10.1039/d5cp00483g","DOIUrl":null,"url":null,"abstract":"This study employed machine learning to predict the solubility parameter (<em>δ</em>) and bond dissociation energy (BDE) of antioxidant molecules, focusing on <em>p</em>-phenylenediamine derivatives with varying carbon chain lengths, side group positions, and functional groups (–CH<small><sub>3</sub></small>, –OH, and –NH<small><sub>2</sub></small>). The multilayer perceptron (MLP) model, enhanced by data augmentation and genetic algorithms, was developed to correlate the “molecular structure–descriptor–target parameter” relationship. The model achieved high prediction accuracy (coefficient of determination &gt;0.86, relative percent difference &gt;2.62). SHapley Additive exPlanations analysis revealed molecular polarity as the key factor influencing antioxidant performance. Molecules with –NH<small><sub>2</sub></small> side groups exhibited lower BDE values. A <em>p</em>-phenylenediamine derivative with ‘CH<small><sub>3</sub></small>[CH<small><sub>2</sub></small>]<small><sub>13</sub></small>CH(NH<small><sub>2</sub></small>)–’ connected to an aniline group showed optimal properties (Δ<em>δ</em> = 0.02 (J cm<small><sup>−3</sup></small>)<small><sup>0.5</sup></small>, BDE = 289.46 kJ mol<small><sup>−1</sup></small>). Molecular simulations confirmed that the proposed antioxidant has excellent compatibility, anti-migration, and antioxidant activity in triglyceride oil. This study demonstrates the utility of MLP models for designing high-efficiency antioxidants for edible oils.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"43 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00483g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study employed machine learning to predict the solubility parameter (δ) and bond dissociation energy (BDE) of antioxidant molecules, focusing on p-phenylenediamine derivatives with varying carbon chain lengths, side group positions, and functional groups (–CH3, –OH, and –NH2). The multilayer perceptron (MLP) model, enhanced by data augmentation and genetic algorithms, was developed to correlate the “molecular structure–descriptor–target parameter” relationship. The model achieved high prediction accuracy (coefficient of determination >0.86, relative percent difference >2.62). SHapley Additive exPlanations analysis revealed molecular polarity as the key factor influencing antioxidant performance. Molecules with –NH2 side groups exhibited lower BDE values. A p-phenylenediamine derivative with ‘CH3[CH2]13CH(NH2)–’ connected to an aniline group showed optimal properties (Δδ = 0.02 (J cm−3)0.5, BDE = 289.46 kJ mol−1). Molecular simulations confirmed that the proposed antioxidant has excellent compatibility, anti-migration, and antioxidant activity in triglyceride oil. This study demonstrates the utility of MLP models for designing high-efficiency antioxidants for edible oils.

Abstract Image

对苯二胺抗氧化剂分子结构的机器学习辅助设计
本研究采用机器学习预测抗氧化剂分子的溶解度参数(δ)和键解离能(BDE),重点研究了具有不同碳链长度、侧基位置和官能团(-CH3、-OH和-NH2)的对苯二胺衍生物。建立了基于数据增强和遗传算法的多层感知器(MLP)模型,以关联“分子结构-描述符-目标参数”关系。该模型具有较高的预测精度(决定系数>;0.86,相对百分比差>;2.62)。SHapley加法解释分析显示分子极性是影响抗氧化性能的关键因素。具有-NH2侧基的分子BDE值较低。‘ CH3[CH2]13CH(NH2) - ’连接苯胺基团的对苯二胺衍生物表现出最佳的性能(Δδ = 0.02 (J cm−3)0.5,BDE = 289.46 kJ mol−1)。分子模拟证实了所提出的抗氧化剂在甘油三酯油中具有良好的相容性、抗迁移性和抗氧化活性。本研究验证了MLP模型在设计高效食用油抗氧化剂中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信