Udita Chandola, Marinna Gaudin, Camille Trottier, Louis-Josselin Lavier-Aydat, Eric Manirakiza, Samuel Menicot, Erik Jörg Fischer, Isabelle Louvet, Thomas Lacour, Timothée Chaumier, Atsuko Tanaka, Georg Pohnert, Samuel Chaffron, Leïla Tirichine
{"title":"Non-cyanobacterial diazotrophs support the survival of marine microalgae in nitrogen-depleted environment","authors":"Udita Chandola, Marinna Gaudin, Camille Trottier, Louis-Josselin Lavier-Aydat, Eric Manirakiza, Samuel Menicot, Erik Jörg Fischer, Isabelle Louvet, Thomas Lacour, Timothée Chaumier, Atsuko Tanaka, Georg Pohnert, Samuel Chaffron, Leïla Tirichine","doi":"10.1186/s13059-025-03597-4","DOIUrl":null,"url":null,"abstract":"Non-cyanobacteria diazotrophs (NCDs) are shown to dominate in surface waters shifting the long-held paradigm of cyanobacteria dominance. This raises fundamental questions on how these putative heterotrophic bacteria thrive in sunlit oceans. The absence of laboratory cultures of these bacteria significantly limits our ability to understand their behavior in natural environments and, consequently, their contribution to the marine nitrogen cycle. Here, via a multidisciplinary approach, we identify the presence of NCDs within the phycosphere of the model diatom Phaeodactylum tricornutum (Pt), which sustain the survival of Pt in nitrogen-depleted conditions. Through bacterial metacommunity sequencing and genome assembly, we identify multiple NCDs belonging to the Rhizobiales order, including Bradyrhizobium, Mesorhizobium, Georhizobium, and Methylobacterium. We demonstrate the nitrogen-fixing ability of PtNCDs through in silico identification of nitrogen fixation genes and by other experimental assays. We show the wide occurrence of this type of interactions with the isolation of NCDs from other microalgae, their identification in the environment, and their predicted associations with photosynthetic microalgae. Our study underscores the importance of microalgae interactions with NCDs to support nitrogen fixation. This work provides a unique model Pt-NCDs to study the ecology of this interaction, advancing our understanding of the key drivers of global marine nitrogen fixation.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03597-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-cyanobacteria diazotrophs (NCDs) are shown to dominate in surface waters shifting the long-held paradigm of cyanobacteria dominance. This raises fundamental questions on how these putative heterotrophic bacteria thrive in sunlit oceans. The absence of laboratory cultures of these bacteria significantly limits our ability to understand their behavior in natural environments and, consequently, their contribution to the marine nitrogen cycle. Here, via a multidisciplinary approach, we identify the presence of NCDs within the phycosphere of the model diatom Phaeodactylum tricornutum (Pt), which sustain the survival of Pt in nitrogen-depleted conditions. Through bacterial metacommunity sequencing and genome assembly, we identify multiple NCDs belonging to the Rhizobiales order, including Bradyrhizobium, Mesorhizobium, Georhizobium, and Methylobacterium. We demonstrate the nitrogen-fixing ability of PtNCDs through in silico identification of nitrogen fixation genes and by other experimental assays. We show the wide occurrence of this type of interactions with the isolation of NCDs from other microalgae, their identification in the environment, and their predicted associations with photosynthetic microalgae. Our study underscores the importance of microalgae interactions with NCDs to support nitrogen fixation. This work provides a unique model Pt-NCDs to study the ecology of this interaction, advancing our understanding of the key drivers of global marine nitrogen fixation.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.