{"title":"Computation of Miura surfaces with gradient Dirichlet boundary conditions","authors":"Frédéric Marazzato","doi":"10.1093/imanum/draf033","DOIUrl":null,"url":null,"abstract":"Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry gave suboptimal conditions for existence of solutions and proposed an $H^{2}$-conformal finite element method to approximate them. In this paper the existence of Miura surfaces is studied using a gradient formulation. It is also proved that, under some hypotheses, the constraints propagate from the boundary to the interior of the domain. Then, a numerical method based on a stabilized least-square formulation, conforming finite elements and a Newton method, is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"43 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry gave suboptimal conditions for existence of solutions and proposed an $H^{2}$-conformal finite element method to approximate them. In this paper the existence of Miura surfaces is studied using a gradient formulation. It is also proved that, under some hypotheses, the constraints propagate from the boundary to the interior of the domain. Then, a numerical method based on a stabilized least-square formulation, conforming finite elements and a Newton method, is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.