Junpeng Wang, Dennis R Bukenberger, Simon Niedermayr, Christoph Neuhauser, Jun Wu, Rudiger Westermann
{"title":"SGLDBench: A Benchmark Suite for Stress-Guided Lightweight 3D Designs.","authors":"Junpeng Wang, Dennis R Bukenberger, Simon Niedermayr, Christoph Neuhauser, Jun Wu, Rudiger Westermann","doi":"10.1109/TVCG.2025.3573774","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the Stress-Guided Lightweight Design Benchmark (SGLDBench), a comprehensive benchmark suite for applying and evaluating material layout strategies to generate stiff, lightweight designs in 3D domains. SGLDBench provides a seamlessly integrated simulation and analysis framework, including six reference strategies and a scalable multigrid elasticity solver to efficiently execute these strategies and validate the stiffness of their results. This facilitates the systematic analysis and comparison of design strategies based on the mechanical properties they achieve. SGLDBench enables the evaluation of diverse load conditions and, through the tight integration of the solver, supports high-resolution designs and stiffness analysis. Additionally, SGLDBench emphasizes visual analysis to explore the relationship between the geometric structure of a design and the distribution of stresses, offering insights into the specific properties and behaviors of different design strategies. SGLDBench's specific features are highlighted through several experiments, comparing the results of reference strategies with respect to geometric and mechanical properties.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3573774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the Stress-Guided Lightweight Design Benchmark (SGLDBench), a comprehensive benchmark suite for applying and evaluating material layout strategies to generate stiff, lightweight designs in 3D domains. SGLDBench provides a seamlessly integrated simulation and analysis framework, including six reference strategies and a scalable multigrid elasticity solver to efficiently execute these strategies and validate the stiffness of their results. This facilitates the systematic analysis and comparison of design strategies based on the mechanical properties they achieve. SGLDBench enables the evaluation of diverse load conditions and, through the tight integration of the solver, supports high-resolution designs and stiffness analysis. Additionally, SGLDBench emphasizes visual analysis to explore the relationship between the geometric structure of a design and the distribution of stresses, offering insights into the specific properties and behaviors of different design strategies. SGLDBench's specific features are highlighted through several experiments, comparing the results of reference strategies with respect to geometric and mechanical properties.