MINIMALLY USER-GUIDED 3D MICRO-ULTRASOUND PROSTATE SEGMENTATION.

Alex Ling Yu Hung, Kai Zhao, Kaifeng Pang, Qi Miao, Zhaozhi Wang, Wayne Brisbane, Demetri Terzopoulos, Kyunghyun Sung
{"title":"MINIMALLY USER-GUIDED 3D MICRO-ULTRASOUND PROSTATE SEGMENTATION.","authors":"Alex Ling Yu Hung, Kai Zhao, Kaifeng Pang, Qi Miao, Zhaozhi Wang, Wayne Brisbane, Demetri Terzopoulos, Kyunghyun Sung","doi":"10.1109/isbi60581.2025.10981266","DOIUrl":null,"url":null,"abstract":"<p><p>Micro-ultrasound is an emerging imaging tool that complements MRI in detecting prostate cancer by offering high-resolution imaging at lower cost. However, reliable annotations for micro-ultrasound data remain challenging due to the limited availability of experts and a steep learning curve. To address the clear clinical need, we propose a click-based, user-guided volumetric micro-ultrasound prostate segmentation model requiring minimal user intervention and training data. Our model predicts the segmentation of the entire prostate volume after users place a few points on the two boundary image slices of the prostate. Experiments show that the model needs only a small amount of training data to achieve strong segmentation performance, with each of its components contributing to its overall improvement. We demonstrate that the level of expertise of the user scarcely affects performance. This makes prostate segmentation practically feasible for general users.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isbi60581.2025.10981266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-ultrasound is an emerging imaging tool that complements MRI in detecting prostate cancer by offering high-resolution imaging at lower cost. However, reliable annotations for micro-ultrasound data remain challenging due to the limited availability of experts and a steep learning curve. To address the clear clinical need, we propose a click-based, user-guided volumetric micro-ultrasound prostate segmentation model requiring minimal user intervention and training data. Our model predicts the segmentation of the entire prostate volume after users place a few points on the two boundary image slices of the prostate. Experiments show that the model needs only a small amount of training data to achieve strong segmentation performance, with each of its components contributing to its overall improvement. We demonstrate that the level of expertise of the user scarcely affects performance. This makes prostate segmentation practically feasible for general users.

微创用户引导的三维微超声前列腺分割。
微超声是一种新兴的成像工具,通过提供低成本的高分辨率成像来补充MRI检测前列腺癌。然而,由于专家的可用性有限和陡峭的学习曲线,对微超声数据的可靠注释仍然具有挑战性。为了满足明确的临床需求,我们提出了一种基于点击的、用户引导的体积微超声前列腺分割模型,需要最少的用户干预和训练数据。在用户在前列腺的两个边界图像切片上放置一些点后,我们的模型预测整个前列腺体积的分割。实验表明,该模型只需要少量的训练数据就可以获得较强的分割性能,其每个组成部分都有助于整体的改进。我们证明了用户的专业水平几乎不影响性能。这使得前列腺分割对一般用户来说实际上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信