{"title":"Real-Time Detection of Meningiomas by Image Segmentation: A Very Deep Transfer Learning Convolutional Neural Network Approach.","authors":"Debasmita Das, Chayna Sarkar, Biswadeep Das","doi":"10.3390/tomography11050050","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Developing a treatment strategy that effectively prolongs the lives of people with brain tumors requires an accurate diagnosis of the condition. Therefore, improving the preoperative classification of meningiomas is a priority. Machine learning (ML) has made great strides thanks to the development of convolutional neural networks (CNNs) and computer-aided tumor detection systems. The deep convolutional layers automatically extract important and dependable information from the input space, in contrast to more traditional neural network layers. One recent and promising advancement in this field is ML. Still, there is a dearth of studies being carried out in this area.</p><p><strong>Methods: </strong>Therefore, starting with the analysis of magnetic resonance images, we have suggested in this research work a tried-and-tested and methodical strategy for real-time meningioma diagnosis by image segmentation using a very deep transfer learning CNN model or DNN model (VGG-16) with CUDA. Since the VGGNet CNN model has a greater level of accuracy than other deep CNN models like AlexNet, GoogleNet, etc., we have chosen to employ it. The VGG network that we have constructed with very small convolutional filters consists of 13 convolutional layers and 3 fully connected layers. Our VGGNet model takes in an sMRI FLAIR image input. The VGG's convolutional layers leverage a minimal receptive field, i.e., 3 × 3, the smallest possible size that still captures up/down and left/right. Moreover, there are also 1 × 1 convolution filters acting as a linear transformation of the input. This is followed by a ReLU unit. The convolution stride is fixed at 1 pixel to keep the spatial resolution preserved after convolution. All the hidden layers in our VGG network also use ReLU. A dataset consisting of 264 3D FLAIR sMRI image segments from three different classes (meningioma, tuberculoma, and normal) was employed. The number of epochs in the Sequential Model was set to 10. The Keras layers that we used were Dense, Dropout, Flatten, Batch Normalization, and ReLU.</p><p><strong>Results: </strong>According to the simulation findings, our suggested model successfully classified all of the data in the dataset used, with a 99.0% overall accuracy. The performance metrics of the implemented model and confusion matrix for tumor classification indicate the model's high accuracy in brain tumor classification.</p><p><strong>Conclusions: </strong>The good outcomes demonstrate the possibility of our suggested method as a useful diagnostic tool, promoting better understanding, a prognostic tool for clinical outcomes, and an efficient brain tumor treatment planning tool. It was demonstrated that several performance metrics we computed using the confusion matrix of the previously used model were very good. Consequently, we think that the approach we have suggested is an important way to identify brain tumors.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11050050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Developing a treatment strategy that effectively prolongs the lives of people with brain tumors requires an accurate diagnosis of the condition. Therefore, improving the preoperative classification of meningiomas is a priority. Machine learning (ML) has made great strides thanks to the development of convolutional neural networks (CNNs) and computer-aided tumor detection systems. The deep convolutional layers automatically extract important and dependable information from the input space, in contrast to more traditional neural network layers. One recent and promising advancement in this field is ML. Still, there is a dearth of studies being carried out in this area.
Methods: Therefore, starting with the analysis of magnetic resonance images, we have suggested in this research work a tried-and-tested and methodical strategy for real-time meningioma diagnosis by image segmentation using a very deep transfer learning CNN model or DNN model (VGG-16) with CUDA. Since the VGGNet CNN model has a greater level of accuracy than other deep CNN models like AlexNet, GoogleNet, etc., we have chosen to employ it. The VGG network that we have constructed with very small convolutional filters consists of 13 convolutional layers and 3 fully connected layers. Our VGGNet model takes in an sMRI FLAIR image input. The VGG's convolutional layers leverage a minimal receptive field, i.e., 3 × 3, the smallest possible size that still captures up/down and left/right. Moreover, there are also 1 × 1 convolution filters acting as a linear transformation of the input. This is followed by a ReLU unit. The convolution stride is fixed at 1 pixel to keep the spatial resolution preserved after convolution. All the hidden layers in our VGG network also use ReLU. A dataset consisting of 264 3D FLAIR sMRI image segments from three different classes (meningioma, tuberculoma, and normal) was employed. The number of epochs in the Sequential Model was set to 10. The Keras layers that we used were Dense, Dropout, Flatten, Batch Normalization, and ReLU.
Results: According to the simulation findings, our suggested model successfully classified all of the data in the dataset used, with a 99.0% overall accuracy. The performance metrics of the implemented model and confusion matrix for tumor classification indicate the model's high accuracy in brain tumor classification.
Conclusions: The good outcomes demonstrate the possibility of our suggested method as a useful diagnostic tool, promoting better understanding, a prognostic tool for clinical outcomes, and an efficient brain tumor treatment planning tool. It was demonstrated that several performance metrics we computed using the confusion matrix of the previously used model were very good. Consequently, we think that the approach we have suggested is an important way to identify brain tumors.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.